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1: Demonstration of Stereo Mapping Technology
1.1 Introduction

'rhe focus of the research over this postdoctoral contract has been in augmenting and refining the
specification of image matching strategies to be employed in an advanced stereo mapping system.
Initially, our research task was to evaluate a preliminary design for a mapping system, and then
by carrying out test implementations of elements of this proposed system, to iterate on the design
process. As part of a continuing mapping program, this phase of the research would lead to more
effective representations and improved matching strategies for surface reconstruction. The test
implementations would build to provide a foundation on which we would develop an experimental
rule-based stereo matching system. As part of this experimental system, we undertook to develop
an interactive test facility to provide hand synthesized data for rule analysis. A change in the scope
of the project occurred shortly after we had begun the research, and necessitated a redirection in
the emphasis; rather than evaluating or continuing the design, we were to:

a) experiment with an existing matching system (showing its capabilities
and assessing its applicability to the planned system);

b) demonstrate the design and the utility of the rule-based approach to
surface inference from monocular information;

c) develop tools to support an interactive test facility.

1.2 Scope of the Resaecrch

In a), we undertook to apply an existing stereo mapping system [Blaker 19811 to some new imagery.
This was designed to demonstrate its effectiveness, to expose its limitations, and to suggest both
its role in an advanced mapping system and complementary research needed to improve its utility.
Significant restructuring of the systemn was called for in enabling it to process this imagery.
Details of these changes are described in section 5, which deals with the matching process. The
modifications have now been implemented, enabling the system to:

*function on the output of an improved edge operator [Marimont, 19821;

* use edge extent as one of its parameters in seeking optimized correspon-
dence;

* exploit prepared transform information in processing images whose
epipolar lines are not collinear with the scanning axes of the cameras.

Separate funding sources supported research in analysis and synthesis of rules for inference of
three-dimensional shape from single images. This inferenee also has application in constraining

Rearch for matches in stereo correspondence. WNe will de3cribe here some results of this research,

77



Stereo Mapping %i.3

and, as part of the demonstration, will show its use in shape inference and search constraint in
the domain of Orthogonal Trihedral Vertices (OTV's).

Our work in developing tools has centered on:

a) a system for the hand construction of edge descriptions from hard copy
imagery;

b) an interactive system for determining the transform to bring image
pairs into collinear epipolar registration.

Both of these systems make extensive use of interactive graphics, and the latter takes much

advantage of previous stereo research from our laboratory (Gennery 1980]).

These are the three principal areas to be covered in this report:

0 experimentation with the automated mapping system;

* assessment of rule synthesis from manual and automated edge processes;

* development of test facility tools for edge extraction and image registra-
tion.

1.3 Specific Tasks

We will describe results in these areas of the research through discussion of the following:

a) implementation of the digitizing test facility;

b) the use of image edge descriptions produced using this facility and
from an automated process Marimont 1982] in synthesizing rules
for stereo matching;

c) examination of Orthogonal Trihedral Vertex (OTV) inference rules;

d) development of a system for registration of image pairs;

e) analysis of stereo imagery with an automated stereo process.

I _

L/.
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2: Digitizing Facility
2. 1 Bac kgr oud

Our approach to rule development begins with hand synthesized and some automatically generated

edge data. We have systems for the automatic generation of edge data (i.e. [Marimont 19821).
This data, extracted from a sufficently wide selection of imagery types, gives good insight into the
current capabilities of automated processes. Automated processes, however, are not able presently
to give as meaningful a description of an image as we would like, and have not been designed to

provide the aggregrated abstractions research systems ((Lowe 1982]) will be soon supplying. To
bridge this inadequacy, we work with both automatically generated data (the current state-of-the-

art), and hand generated data (representative of the next generation of edge analysis processes).
The hand generated data is obtained from a manually operated digitizing tablet. We have written

a graphics-based digitizing and editing system to run with a GTCO tablet in producing these
image descriptions. Section 6 lists instructions for the use of this program with the bitpad (GTCO
tablet), and section 9 contains a source listing of the program.

2.2 Imagery Analysi. with the Tablet

Figure 2-1 below shows an image pair of a building complex (referred to as the Sacramento
imagery). Figure 2-2 shows the results of bitpad edge extraction on these images. Figure 2-3 shows
the results of the Marimont operator [Marimont 19821 on the image pair. Manually generated edge
data was produced using this facility for the analysis of rule synthesis of section 3. It was also
used to digitize the building data of figures 2-1 for input to the OTV inference process, as figure
3-1.

Sacramento Imagery
Figure 2-1

f
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Manually Extracted Edges
Figure 2-2

~0

V1,,

Automatically Produced Edges
Figure 2-3
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3: Inference and Modelling
3.1 Introductio.s

We have been addressing inference of matching rules and the use of model-based analysis both
with theoretical analyses and with hand and automated analyses of specific matching strategies;
the latter applied to both real and synthesized imagery examples.

We have obtained extended edge data from hand and automated processing for v- - in synthesis
of matching rules. Results from earlier work on OTV analysis (orthogonal tr- Jr. I vertices)
have been exploited, and a dcmonstration of the use of such a rule for shape rence and in
constraining search for correspondence has been prepared. Other funding has st -irted research
in representation of generic structures. We have taken examples from this moc .~research to
produce ground and aerial views of a building complex, and have used this, as w. ither data,
in rule synthesis.

3.12. Geometric Modelling and Computer Vis ion

3.2.1 - Modelling, prediction and interpretation

Of course, one or the primary goals of research in computer vision is the development of systems
that can recognize and locate objects in images. In order to identify such an object, it is clearly
necessary to have some description of its characteristics that can be detected in an image. A
representation of an object is the form this description takes.

One approach to representation is to provide the system with three-dimensional models of objects.
Rotation of these models will allow objects to be observed, conceptually, from differing viewpoints.
If parameters in a particular model are allowed to vary it is possible to have that single model
represent a whole class of objects; constraining the parameters runctions to delimit sub-classes.
Further model manipulations, such as partitioning and projection, can be used to aid in mapping
model to imagery data. The information contained in such object models may be used to determine
possible interpretations of image features (e.g. , edges, ribbons, corners) and to provide feedback
to predict the locations of such features in an image.

ACRONYM [Brooks 19?111 is a three-dimensional rule-based model ling/ vision system developed
here at Stanford that provides, among other things, such feature prediction, model manipulation,
and image interpretation. The rule-base operates on the models and on the sensed data to
accomplish scene interpretation. Such a rule-based approach has been shown to be an effective
form for constraint and search implementation, and allows easy modification and addition of new
rules without the need of altering the underlying code.

Our group's intention over the next few years is to build a rule-based stere system operating
vithin ACRONYM whose functioning will include model-based prediction. Working toward thuis,
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we have been carrying out experiments on scene inference and model-based prediction that will
lead to a repertoire of stereo matching rules.

3.2.2 - Models and stereo matching

One of the major difficulties in determining, stereo correspondence is in dealing with the large num-
ber of matches that are possible. Solution is generally found by search through a large parameter
space, where possible correspondences are limited by geometric or photometric constraints. Search
can be reduced even more dramatically by endowing the matcher with broad domain specific
and domain independent knowledge. Such knowledge can be rule-based and model-based. Our
proposition here is that the three-dimensional information in object models, along with inference
and prediction mechanisms, can be used to interpret features in image pairs. These interpreta-
tions can then be used as filters to constrain the matching. We demonstrate this notion with the
example of Orthogonal Trihedral Vertices, often referred to as cube corners or OTVs. Other rules
synthesized from analysis of both manually extracted and automated edge processes follow.

The work on cube corners points to additional usefulness for a model-based approach. OTV
orientation analysis (from matches across pairs of views) yields almost complete solution for camera
parmameters; constraints on sizes (again, from rules and models) could complete the camera
solution. But the orientation information yielded by a match of a pair of vertices is valid only if
the vertex is a cube corner; thus it is necessary to be able to distinguish between vertices that are
cube corners and those that are not. If the models contain sufficient information to identify cube

corners, then the problem of determining cube corners independently of the identification process
is eliminated. In fact, both the search for cube corners and the search for identification are likely
to be reduced when they are combined.

3.2.3 - OTV rule-based analysis

OTV theory

In cultural scenes, we find a large number of interior and exterior corners of cubes - typically when
two walls at right angles meet the roof or the floor. The importance of utilizing this common
structural element the Orthogonal Tr.hedral Vertex (OTV) has been emphasized earlier[Liebes
19811 .Since they provide a very tight constraint -- the three edges are mutually orthogonal in
space - it is possible to calculate the three dimensional orientations given the projections in the
image. This can be done for both orthographic and perspective viewing.

If the eye is assumed to be focussed on the vertex of the cube corner, perspective can be ignored
and the projection of a cube corner in XYZ space will simply be its orthogonal projection on the
XY plane. Suppose that some 3 - star lha3 angles between its rays a, b and r and also that the

rays are represented by the unit vectors in, v2, t3. We are interested in detecting whether there
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are three vectors in XYZ space, which are mutually orthogonal and project, respectively to V1i,

V2, V3-

Since projection is accomplished by dropping the z-component, any 3 such vectors must be of the

form v, + X1z, V2 + X2z, and V3 + X3 z where z is the unit vector in the z-direction.

Requiring mutual orthogonality implies that the dot products of these vectors in pairs be zero.

From these conditions and some simple manipulations we can calculate the formulas for

(cos a)(cos c) (cos a)(cos b) (cosc)(cos b)
V - (Cosb) ' 2 (cosc) = (cos )

Hence solutions exist if

a) cosa, cosb, cosc are all non-zero and

b) either one or three of cos a, cosb, cosc are negative, so that the quan-
tities under the square root sign are positive.

These results were first derived in [Perkins 1968].

Thus we have a way of both eliminating false candidates for being OTVs and findiag the 3-D
orientations of valid OTV's. This algorithm has been implemented and run on data from the

digitizing tablet.

OTV with/from model.

Our analysis begins on both images, processing bottom up on the two images separately. As the

rule system identifies likely OTVs in images (from its models), it proceeds to match them. The

system should already have a tentative identification of the buildings containing the OTVs, so
there should be relatively few possible matches at this point. Only OTVs that could be the same

point on the same object need be compared. The analysis results in depths of matched objects,

for all those objects having OTVs.

This requires that the modelling system handle point elements, and that it include both:

* inferring OTVs from models (volumes);

* accessing OTVs stored explicitly with the models.

u I I " ' - - I " II I I .. . . r . . .
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3.3 Rule Syntheia

3.3.1 - Inference rv!!es

We continue with the development of inference rules. This work is a logical extension of previous
work [Binford 1981, Lowe 19821 done at Stanford in developing rules for inferring surface infor-
mation from a single view. General assumptions about illumination, object geometry, the imaging
process etc. have been used to derive rules for making specific inferences. For stereo vision Arnold
and Binford (Arnold 19801 have developed conditions on correspondence of edge and surface in-
tervals. We divide our rules into two categories: monocular rules, which enable surface inference
from a single view; and stereo rules, which facilitate cross-image matching.

$.3.2 - Monocular and stereo rules.

1. Monocular rules - Rules which have been developed for inferences from
monocular views can be utilised to provide a partial 3-dimensional
interpretation which directs search in the second view. This category
includes the rule for interpretation of Orthogonal Trihedral Vertices.

Another example is the T-junction rule [Binford 1981] which states that
'In absence of evidence to the contrary, the atem of a T is not nearer
than the top, i.e. is coincident in apace or further away'. Application
of this rule gives a set of nearer/farther relations. A hypothesized
correspondence of edges which leads to inconsistent conclusions from
the two views can be pruned from the search.

An image line which is straight must be the image of a straight space
$ curve unless the curve is planar and the observer is coincidentally

aligned with the plane of curvature. This enables us to dismiss cor-
respondences between straight edges in one view and curves in the other
view. If two image curves are projectively consistent with parallel, we
assume they are images of curves which are parallel in space. That im-
plies that their images in the other view would be parallel i e. parallels
map to parallels.

As these examples illustrate, most of the rules in [Binford 1981, Lowe
19821 and others developed by Malik and Binford have as direct corol-
laries stereo rules for checking the legality of a match. They can even
direct the search process.
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2. Stereo Rules - these are rules which have been derived from the stereo
imaging process, and are a function of the imaging geometry.

An example rule in this class, which has long been used for finding stereo
correspondences, is the epipolars rule - corresponding points must lie on
corresponding epipolar lines. These rules have inherently no monocular
analogs. Here are a few:

a) Horizontal planes in one view get mapped to horizon-
tal planes in the other view.

b) Use of projective and quasi-projective invariants. This
has not been examined in detail. Duda and Hart[Duda
19731 devote a chapter to this topic which has not
really been exploited in stereo work.

c) Conditions on correspondence of edges and surface
intervals[Arnold 1980J.

d) Surface Occlusion rules:

Surfaces visible in one view can be occluded in the
other view. We are interested in the conditions when
this takes place. The basic idea is that if we cross a
surface, an obscuration of edge occurs. A left surface
visible in a right view is visible in the left view un-
less there is obscuration by a tall object. Similarly a
right surface visible in a 10t view will be seen unless
obscured by a tall object. These surface-obscuration
rules can be formalized by the cross-product rule:

For the hypothesized edge match el with f, and e2
with f2, we compute the Z-component of the vec-
tor cross-product in the left image pair and the right
image pair. If the z-components have opposite signs,
ve are seeing opposite sides of the surface. That im-

pl",3 that the object is not opaque.

_____________________________________________,- ~ ~ - -
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3.3.3 - Use of inference rules in a test analysis

Our preliminary results indicate good potential for the success of this approach. On hand simula-
tions with line drawings of stereo pairs, the rules helped narrow down the choices considerably.

Consider the imagery shown in figures 3-1 and 3-2 Figure 3-1 is the right view and 3-2 the left

view. Vertices 1, 2, 3 are orthogonal triheJlral vertices. Using the formulae developed earlier, we
can find the 3-D orientations of the edge vectors. These can be matched with the 3-D orientations
of 1', 2', 3' to obtain a registering of these vertices when combined with the epipolar constraint.
All OTV's in one view need not be visible in the other ie. 4'. Of the monocular constraints, the
other major constraints which can be seen here are the T-junction rule and the parallels rule. In

figure 3-2 edge 5 is behind edge 6. Edges 7 and 8 are parallel and so are 7' and 8'. A match of 8
with 9' would not be accepted. Surfaces S, and S 2 are both horizontal planes (as can be deduced
from the OTV analysis) and can be matched. Surface S3 is not horizontal. lHere of course, this
does not provide any new information. Surface S4 being a left face in a left view is not guaranteed
to be visible in the other view - as in fact it is. The cross-product rule (ould be used to d&.-niss

a match between 10 and 10'.

Description of Left Image of Stereo Pair
Figure 3-1

I - -I

- -5



Inference Rwdea IS.SS 1

Description at Right Image of Stereo Pair
Figure 3-2
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4: Image Registration
4-.1 Introduction to Epipolar Geometr

The search process in automated stereo napping can be greatly restricted, and computation

times significantly reduced, if information is available relating the relative camera geometries of

a stereo pair. Often this information is available in the reconnaisance data (or at least a rough

approximation to it). Other manual and automated schemes have been devised to provide the

information when it is not present with the imagery ([Gennery 1980], [Hallert 1960]). This camera

geometry information allows establishing epipolar correspondence of lines across images. When

this has been done, search in one image for match points of a feature in the other image can be

constrained along a single vector. More generally, any features lying along a particular vector in

the one image may be found along a single vector in the other image. These image plane vectors

are termed epipolar lines. Corresponding vectors are termed corresponding or conjugate epipolar

lines.

In this section we detail an algorithm for determining conjugate epipolar lines in a set of imagery

for which such camera geometry information is not explicitly available. Here, we rely upon an

operator to select corresponding points in the two images. The system automatically improves
the resolution of the correspondence through Fourier interpolation over a match window [Gennery

1980]. The set of such points is taken by an automated camera solver to produce the needed

geometric information. This point selection is done with pan/zoom cursor control on a graphics

device. If the camera information is available (as, for example, from reconnaisance data), then the

* point matching phase may be omitted (although this provision has not been enabled in the current

system). Equally, rough camera geometry information, if available, may be used to partially

automate the point selection phase, although again this is not implemented here. [Gennery 19801

and IMoravec 1980] have implemented totally automatic camera solvers in their stereo matching
systems. Our next improvement to this system will be to incorporate the image sampling and

feature matching of the [Gennery 19801 system, removing the need for manual point selection.
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4.2 Glosary of Terme

Given two cameras C1 and C2 with origins 01 and 02 and focal planes P and P2, we call:

Bundle.of ines: A family of lines containing a common point.

Epipolar coordinates of a point: The number of the epipolar line it belongs to, and its distance to

a fixed reference, like the epipole if it exists.

Epipolar direction: The direction of all epipolar lines if they are parallel.

Epipolar line: The intersection of an epipolar plane with a focal plane. Alternate definition: the

image in one camera of the pre-image of a point in the other camera's focal plane.

Epipolar plane: Any plane containing the two camera centers 01 and 02.

Epipolar space: A space where the coordinates are the epipolar coordinates. In this space, a
horizontal line is an epipolar line, and the epipole, if it exists, is a whole vertical
line.

Epipole: The intersection, if it exists, of all epipolar lines in a focal plane.

Conjugate epipolar lines: the intersections of an epipolar plane with the two focal planes.

? P?

IOI
ft e4 L- + 14[ . i

lA0, V1. t", ~

Epipolar Geometry
Figure 4-1
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4.3 Background Theory

Given two stereo images P and P2 (the content of the focal planes P and P 2 of the cameras), and
two lines LI and L 2 contained in PI and P2 , in general every point of L, maps to a line segment i:

P2 , and there is no particular relationship between the line segments mapping to different point-

Fundamental property:

Every point in LI will map to a line segment contained in the same line L2 if and only if L1 rn,
L2 are a pair of conjugate epipolar lines.

Epipolar Geometry:

The family of epipolar lines in a focal plane is:

Either

a) a set of parallel lines having a common epipolar direction,

or

b) a bundle of lines, the intersection of which is the epipole.

4.4 Requirements of the System

Given a pair of stereo images, we want to:

1) identify the kind of epipolar geometry present in the images;

2) explicitly show the epipolar lines belonging to each image;

3) for each image, compute the parameters which relate the original coor-
dinates to the epipolar coordinates;

4) construct the image transforms in epipolar space.

Prior to these 4 steps, we will need to solve for the cameras, that is, to determine the 5 parameters
describing their relative orientation. A procedure developed at Stanford [Gennery 19801 is used
for this. We proceed as above, using simple analytic geometry for our calculations.

4.5 Algorithm Used

4.5.1 - Camera registration output

Each camera is viewed as a referential (e, z, y,z), i E {1,2. The registration procedure yields
azimuth, elevation, pan, tilt, and roll of one camera with respect to the other. From th%:e, rle

compute:
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01

Top view of a situation with only one epipole
Figure 4-2

\Ja U~ a. q

To.- view of a situation with epipoea
Figure 4-3
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1) the rotation matrix R between the two referentials:

I'll T12  T13

R - r 2 1  r22 r23

(r31 r32 r33)

2) the translation unit vector t, the components of which are:

n the base 1ziyz, ()in the base 02zyz

Note that the magnitude of the translation vector cannot be determined from a pair of images.*' j 4.5.2 - Epipolar geometry determination

The focal planes Pj are planes parallel to Oxy, intersecting Oez at z = f,, the focal distance.
There is an epipole in plane P if and only if the translation vector intersects this plane, that is,It if and only if its third component is not zero.

We thus determine the case we are working with:

if -y 3 0 and v 4 0, there are two epipoles: CASE 1
if - 0 and a'= 0, there is one epipole E1 : CASE 2

if -y = 0 and v 1 0, there is one epipole E 2 : CASE 3
if -1 = 0 and v = 0, there are no epipoles: CASE 4

a) -y = 0 is replaced in the code by I'yl < threshold, where threshold is
chosen as a function of the arithmetic precision of the machine: if we
had infinite precision, then we could consider every case as being case

1. Here threshold = .0001 was found to be a good estimate.

b) Most image pairs will belong to the first case, with -y and v of the order
of .1. The epipoles exist, are outside the picture frame, and, for the

images worked with to date, tend to be at a distance os" about 10 times
the picture di.m-ension.

).

" ' " -. • ml m I i . ... . ..
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4.5.3 - Epipoles and epipolar directions

If the epipole Ei exists, it is the extremity of the vector collinear to the translation vector, with a
third component equal to f,. If it does not, then the translation vector is the epipolar direction.
Hence:

Case 1: E2(,'!-, - , E2 ("-, -

Case 2: EI(tf L) V2 (X, u)

Case 3: Vi(a,3) E 2(--, !LA

Case 4: V,(0, P) V2(0, A)

4.5.4 - Epipolar line calculation

4.5.5 - CASE 1: two epipoles

a) theory

Let M,(zl,yl,z 1 ) be a point in P1 . E1 M, defines an epipolar line in P1 , and the corresponding

E2 M2 defines the conjugate epipolar line in P2 . The plane (Ei,9 1 ,0 2 , E2 , M 1 , M 2 ) contains the
translation vector t and El M1. Its normal is E M1 X t. The normal of P2 is 82z. Hence the
intersection of the two planes is given by the vector:

e 2 z X (EiMi X t) = (0 2 z-t)EIMi -(0 2 z-EMI)t

and E2 M2 is collinear to this vector. Suppose that in Oizyz, E1 M: (xi,y,O). In terms of
components in 0z2Yz:

~(TIIXI + 1211

02Z~~ ~ ~ ~ = ) tE M 21 X1 + r2211
\z'i ,r31 l+ r32Yl/

E2 M2 is collinear to V - Xz') (X,(vri, - Xr 3 ,) + Y,(Vr12 - Xr32)

I, -p3) + YI(Vr22 - Ar32))
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If we let A be the matrix:

Vrl I- -\ra, Pr12-Xra,2

VT'21 - AT31 V 2 2 - I. 4?2

Then we can write E2 M 2 = AE1 M where EIM, is in base Biz and E2 M 2 is in base 02 z.

P,
Pa-

Case 1
Figure 4-4

b) algorithm

Let N, be the number of epipolar lines that we want to determine. Each epipolar line is uniquely
determined by the angle it makes with the z-axis. Let 0 be this angle. Given k, the epipolar line
number, 0 < k < n1 - 1, how can we determine 0? If 00 and 01 are the lower and upper limits
between which 9 is allowed to vary, and 02 =(C,-,o) then we will choose the middle of each
interval: 0 = 0o + (k + .5)02 But what are to and 81? We have to distinguish between three cases:

0 The epipole is in the picture (very unlikely). Then 0 can vary between
0 and 2w radians;
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0 The epipole is outside the image: there is a minimum and maximum
angle under which the image is seen from this point. If we choose these
angles in [0,27], then most ,4 the time every 0 E [0o,0 1] will define a
valid epipolar line in Pi;

The exception from above is when the epipole is left of the image but on
a same vertical level: then 18o, 01] cannot be connected and still included
in [0, 2w]. In this case we will choose the angles in [,, ].

Then L, will be defined by the point E, and the vector V,(cosO, ainO), and L 2 is defined by Ek
and V2 = AV,.

4.5.6 - CASE 2: one epipole E,

a) theory

Given an epipolar line y ,, we already know that the corresponding epipolar line L2 in P2 is
collinear to the vector t - V2 (X, u). Hence we just need to find a point belonging to L2 . Clearly,
L2 is the intersection of P2 with the plane (El, M 1,0 2 ). Thus any line contained in this plane will
intersect P2 at a point contained in L2. In particular, consider the parallel to L, driven through
02. It intersects P2 , thus L2, at M3 such that, in base 02xyz:

TI X + T12YI f2 (zrI +r13~t

ffVZ,7,
\r31(!3 Z I r32Yl fJ ~~~E, M, = (1 Z1 + 1231) hence 02M3 f2=~ I r20

b) algorithm

In the same way as in case 1, we define L,(Et, VI) where Vt(z, = cos 1,X2 = sin02 ). Then L2 is
defined by (M 3, V2 ), where the coordinates of M3 are

f2 r1 Iz + rl'2, r21, 3T + T22 1
Sr3iX 1 + r3iy r3 1X1 + r32 y1,J

.. . ... --iI- l 1 -:l .-. . . . l 
l

- - ,
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At1

Case 2
Figure 4-5

4.5.7 - CASE 3: one epipole E%

a) theorv

Let an epipolar line in P be defined by the translation vector t - V, and by a point M we

pick. In P 2 , L 2 goes through E 2 and is collinear to a vector E2 A1 2 , intersection of P2 with the

plane (02 ,E 2 , MI). This plane is orthogonal to 02 M 1 X t and P2 is orthogonal to 02 z. Hence the

intersection is collinear to 02z X (02 M X t)

since 02 MI = 0201 + 01 MI

= kt + OM 1 ,

02 MI X t = 01 M 1 X t,

and 02z X (0 2 M X t) = (02z .)O1MM - (32Z" 01mj)t.
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Suppose 01 M, : (x,yl,fl) in 01 ryz. Then in 0z2Yz:

=2l X I +r2211+ r23h

(' V) 1) ,(31Z1 + r32Y1 + r33fl]

E2 M2 is thus collinear to:

(x; - XZ'=) - Zi(V7, - Xr3 ) + YI(vr2 - Xr 32) + 11(r13 -X 3 ))
VY I A '1 kl'?21 - 1731) +Y1(Vr2 2 -/1732) +f,(I73 /13

Hence, if we let A be the same matrix as in CASE 1 and OF3 be the offset matrix:

( vr13 - Xr33
1/rs3 -/1733]

Then we have: E 2 A12 = AOIM, + OF3

Where OiM is in base Ojzy and E2 M2 is in base 0 2XY

b) algorithm

Now, how do we pick M, in the first place? We want a set of N, equally spaced epipolar lines,

and it appears convenient to pick points on the axes. If the epipolar lines are more horizontal,

or the image stretched in height, then we will pick N, equally spaced points on the vertical axis,

suitably located to cover the entire image. If the epipolar lines are more vertical or the image

more stretched in width, then we pick them on the horizontal axis. Let L.,Lv be the picture

dimensions and (V,, V.) the epipolar direction:

If V Lv < V,L, and V, < 0, we pick y, - (LIv.I + L, -T0,,
If VzLv < V,,, and V > 0, we pick yj = (L. 'I + 5 L

If VvL. < VL,, and V. < 0, we pick x, -- (L,,I I + L,)(K + O'5

I r v.t. < V'Lv, and V1, > 1, we pick XI = (LII + L.)(--.5) L.

Then we proceed as indicated abo'e:

L,(MI, V1 i) is matched with L2 (E 2 , V2 = F 2 M 2 ).
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4.5.8 - CASE 4: no epipoles

a) theory

Let an epipolar line in P1 be defined by the translation vector t = V, and by a point M, we pick.

In P2, L2 goes through the image of MI, that is the extremity of a vector collinear to 01 M, and
whose third component is f2. In base O1xyz, 19iMl : (xI, vffl). In base 02 zyz:

( tHXl + t 12Y1 + rl? ~ 13f+1V1r11
01 M 1 = 21XI + r2 2Y 1 + 23f 02 M 2 = "1 Z1-,.,V1+.33f1

ralXI + T32Yl + T331 /f2 f

b) algorithm

We pick points El in the same manner as in case 3. Then we calculate 02M 2 as indicated above
and we match LI(E 1 ,t) with L2 (E2,t).

4.6 Transform Parameters

We want to output the minimum necessary parameters to do the following transformation:

given the coordinates of one point in one image, find its coordinates in epipolar space.

We treat the problem only in CASE 1, which is the most common case encountered. For this case,

we will need:

0 the coordinates of the epipoles;

* the number of epipolar lines;

* the minimum and maximum angle 00 and 01 under which picture 1 is
viewed;

the minimum distances Dlmin and D2min of the epipoles to the
images;

the matrix R, or rather its inverse R- 1 .
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For example, the images of figure 5-6 have transform parameters as follows:

Case = 1
N = 450

El = 356755.3
E 12 = 166509.8

E2 1 = -7765.348
E2 2 = -3509.268

00 = 3.578705

01 = 3.577792
Dlmin = 393249.0

D 2min = 8521.478
R-1 = 430.7463

1-' = 2375.517
21 = 215.9756

R' = 1075.811

4.7 Ezample of Epipolar Registration and Transformation

Figure 4-6 shows a stereo pair of a building complex. Figure 4-7 has this pair superpositioned with
a cet of corresponding epipolar lines. Figure 4-8 shows the imagery transformed such that epplar
liaeE are horizontal in the inge, ard conjugate epipolar lines have the same row coordiart'e.
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Sacranrnto Buiiling Image Pair
Figure 4-6
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Epipolar Lines in this Imagery
Figure 4-7
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* 5: Analysis of Automated Stereo Mapping
5.1 Background

Results from our laboratory over the past few years IQuam 1971, Hannah 1974, Moravec 1980,
Gennery 1980, Arnold 1980, Baker 1981, Arnold 1983], have demonstrated the possibilities of both
area-based and feature-based stereo matching.

Area-based stereo matching uses windowing mechanisms to isolate parts of two image's for cross
correlation. Feature-based stereo matching uses two-dimensional convolution operators (and per-
haps grouping operators) to reduce an image to a depiction of its intensity boundaries, which
can then be put into correspondence. Area-based cross-correlation techniques require distinctive

texture within the area of correlation for successful operation. They break track:

* where there are ambiguous textures or featureless areas (roofs, sand
and concrete);

0 where the correlation area crosses surface discontinuities (at occlusions
such as buildings, or thin objects (poles));

0 where depth is ill-defined (such as through trees).

In general, ther~e systems break track where there is no local correlation (zero signal, or where two
images do not correspond) or where the correlation is ambiguous (where the signal is repetitive).
The systems must be started manually and corrected when they break track.

Demands of mapping in cultural sites and in locales with surface discontinuity and ambiguous

or non-existent texture make it essential that, if area-based analysis is to be done, it be done
in conjunction with feature-based analysis. Feature-based analysis provides a solution to many

of the problems of correlation. Principal among its advantages is that it operates on the most
discrirninable parts of an image: places that are distinctive in their intensity variation, and where

localization is greatest. These are typically the boundaries between objects or between details on
objects, or between objects and their backgrounds. The important point is that the features being

put into correspondence for depth estimates are the boundaries of objects: area-based analysis is
at its worst at object boundaries, yet determining boundaries can be said to be the most important

part of mapping in 3-space.

L2.*
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Some other advantages of feature-based analysis are:

a) reduced combinatorics - there are fewer features than pixels,

b) greater accuracy - features can, in general, be positioned to sub-pixel
precision, while area positioning precision is inversely proportional to
window size, and considera'ly poorer, and

c) more realistic invariance assumptions - area-based analysis presup-
poses that the photometric properties of a scene are invariant to viewing
position, while feature-based analysis works with the assumption that
it is the geometric properties that are invariant to viewing position.

The Baker system [Baker 1981] is the only current system that mixes these two matching
modalities. We undertook in this postdoctoral work to demonstrate the capabilities of this system
applied to new cultural imagery.

5.2 Baker System: hefore

In the Baker system, image edges are the features considered in stereo matching. These edges
* are located at positions in the image where a change in sign of second difference in intensity

occurs. In the initial case a particular operator (one that was 1 by 7 pixels in size) measured the
directional first difference in intensity at each pixel. Second differences were computed from these,
and changes in sign of these second differences were used to interpolate zero crossings (i.e. peaks
in first difference). Certain local properties other than position were measured and associated with
each edge - contrast, orientation, and intensity to either side - and links were kept to nearest
neighbors above, below, and to the sides. It is these properties that define an edge and provide
the basis for the correspondence process.

The correspondence is a search for edge matches across images. With no prior knowledge of the
viewing situation, one could have any edge in one image matching any edge in the other. The
combinatorics of a naive matching strategy clearly could be enormous. A lot or the analysis of
a matching strategy goes into bounding this combinatorics and constraining the search for edge
correspondences.

One of the principal constraints used in stereo analysis may be determined from a knowledge of
the relative attitudes of the cameras. If two equalivalent cameras are arranged with axes parallel,
as shown in Figure 5-1, then they can be conceived of as sharing a single common image plane.
Any point in the scene will project to two points on that joint image plane (one through each of
the two lens centers), the connection of which w:!l pr-rd-ce a !i:e parallel to the baseline between
the cameras. Thus corresponding edgis in the t-; . i.ag.gs muct lie along the same line in the
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joint image plane. This line is termed an epipolar line (see [Hallert 19601, and section 4). If the

baseline between the two cameras happens to be parallel to the scanning axis of the cameras, then

the correspondence only need consider edges lying along matched lines parallel to that axis in the

two images. These lines are termed conjugate. Figure 5-1 indicates this camera geometry a

geometry which produces collinear epipolar lines. The algorithm described here assumed the stcreo

pair to have such a geometry, and if this was not the case then the appropriate transformation

of the two images had to be made before any processing could be done. A less restrictive soluti' n

would be to have the correspondence process informed of the camera geometries, and have it solve

for the more general epipolar situation as shown in figure 5-2. Incorporation of this capability ik

one of the enhancements we have made to the system over the past few months. Section 4 details

the analysis for this solution.

j i/~~G
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Specialized Epipolar Geometry
Figure 5-1
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Genera] Epipolar geometry
Figure 5-2

The advantage of processing along epipolar lines is that the search for correspondence may be
constrained to one dimension, along a single line-pair. It is then feasible to apply an efficient
optimization process to the matching problem. The Viterbi algorithm [Forney 1973] is the
opLimization process used in this system. It is a dynamic programming technique used extensively
in speech processing, and first used in vision research in some recent work at Control Data
Corporation [Henderson 1979]. An earlier use of a dynamic programming technique for stereo
matching is documented in [Gimel'farb 1972). [Baker 1981] describes in detail the use of the
Viterbi algorithm for stereo correspondence.

Other geometric and photometric constraints may be introduced both in limiting search and
in bounding parameters for the evaluation function. [Arnold 1980] and [Baker 1981] provide
discussions of these constraints in determining edge correspondences.

-_____________ vqav ~
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5.3 Baker System: enhancements

As stated, we undertook in this postdoctoral work to demonstrate the capabilities of the Baker
system [Baker 19811 applied to some cultural scenes. Before carrying out these analyses we:

a) enhanced the system with a capability to work with a better edge
operator [Marimont 1982];

b) enabled it to process images that are not graced with collinear epipolar
geometry (i.e. most images);

c) introduced an additional correspondence measure - edge extent.

To implement these enhancements required substantial redesign of the system, and redesign cycles
with the Marimont process. Chosing useable data also presented difficulties, as the only imagery
available was not of the correct geometry (see below). The two image pairs initially chosen (the

Sacramento apartment complex and a section of some imagery of Moffett Field) proved, on closer
examination, to require quite complex transformation, and could not be easily adjusted for epipolar
processing. Obtaining useable data then tied the progress of this part of the demonstration to the
progress of developing an image registration system.

In general, to bring imagery data into a properly transformed state could proceed in one of two
ways:

* one could determine the transforms and then modify the imagery,
producing an image pair having collinear epipolar geometry;

or
0 one could determine the transforms, and modify the output of an edge

operator process that functions over the original imagery.

The latter is by far the superior approach, as it avoids resampling the image. This approach

necessitates incorporating the transform computation into the stereo system, to follow edge finding
and precede edge matching.

The second part of the stereo system's analysis is an intensity correlation process. This operates
along epipolar lines as well, and clearly requires intensity information to be accessable along
epipolar lines. One solution to this would be to take the original image pair and have the correlator
rotate and change shape, size, and orientation as it moves around the image; this is an awkward and
probably unnecessary complication. An alternative would be to access the transformed images,
sampled as accurately as possible, and do the correlhtion in the rectangular space defined by
collinear epipolar lines. The argument from edge accuracy indicated that transforming edges
rather then resampling the image was the way to go; this argument from intensity correlation
suggests that the resampled image can be uirf.

, - - , I I . .. . . I , I . . .. I 'i I .. ... . b
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Another implementation detail supported this use of both transformed edges and transformed

imagery: it was found that the intensity information available from the Marimont process had

too small a basis for useful correlation, and in fact, for transformed edges, had little relevance

for the matching (it being measured not along epipolar lines). The transformed image had to

be referenced again by the system to obtain more significant intensity estimates oriented along

epipolar lines, and working with the image in epipolar space facilitated this.

The philosophy of the stereo matching process here had been to use edge analysis for, among

other things, its higher accuracy, and to use intensity analysis for the continuity it provides. To

be consistent with this, we wanted to have the highest possible accuracy for edges in epipolar

space, and if sacrifice be needed for simplicity, to do it where it least degraded the analysis -

in the intensity correlation. It is clear that transformed edges give higher accuracy than edges

from transformed images (detectability might not change much, but localization is significantly

reduced); and important simplifications could be obtained for little loss by doing the intensity

correlatio. over the resampled image pair. This meant changes in our plans for the registration

system: it had to produce not just transform information, but transformed images as well. Both

forms are made available as output from the registration program described in section 4, and

the enhanced Baker system uses them both. (However, the original edge finder of the stereo

system has not been modified to use the transform information, and must work (at present) on

the transformed images - with the limitations that brings.)

5.-4 The Marimont Edge Operator

The Marimont edge operator has greater detection and reliability than the original Baker edge

operator, and similar localization; earlier examples of its processing convinced us that its output

would improve the quality of our stereo reconstruction. Its ability to track along zero signal

areas in following zero-crossing edges leads to more coherent image descriptions. [Marimont 1982]

provides details of the operator's functioning. Roughly, it works by convolving an 7n X m lateral

inhibition function of n X n central window with an image. Zero crossings in this resultant image

then indicate edges, and the edge position is determined by interpolating over the lateral inhibition

surface. Section 7 details the content and format of the edge files produced by this process.

A few unanticipated problems became apparent once work with the edges was begun. One point,

noted above, was that the intensity information stored at an edge (its left and right boundary

values) had quite small support (a single pixel). This is in contrast with the original operator which

interpolated for these values in an area 3 pixels wide and removed one pixel from the determined

edge position. Another problem was that the edge connectivity produced by the Marimont system

can be misleading, as figure 5-3 shows. Intensity significance was improved by sampling along

epipolar lines in the transformed images. The connectivity problem has not been looked at yet.



Automated Mapping §5.4 SS

(ood connectivity is inherently difficult to achieve with zero crossing operators. Refinements to
the process are being considered.

q-1

/

Image
Figure 5-3

"l'h, introductiln of edge extent as a parameter in the dynamic programming solution was an

obvi,, frallout IrorTi Usin|g the Marimont edges. Edges are output by that process as strings, with

2-cornnet e ness. The maxiimum and minimum of some string, in transform space, is a measure
of is (epipolar) extent.. Prior to the use of this information the only way that global continuity
entered the analysis was through a consistency enforcement relaxation process which ensured that
edges comected in one view were interpreted as continuous in 3-space; all matching measures
%vr,. qjilv local. XX ith the miodified approach, the correspondence measure is a function of (among
other, More statistically based parameters) the ratio of edge extents. In particular, the likelihood
of edge elernent a in the left iruage rna'ching edge element b in the right image depends on the
product of the ratios of the two tipper extents (up from the edge elements) and the two lower
xec ,t'; (down rroIc the two edge elements).

When image testing began with all of the above accomplished, another problem became apparent:
the stereo system, bound into a machine architecture with a maximum of 256K words of memory,
and always tigh!.1y wedged anyway, had grown with these changes to the point that only small

portion.; of images eou!d be worked on at once. Thus came to exist a windowing mechanism within
the (,dge f!idi,-/Ioading and stereo matching processes.

i
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5.5 Teat Imageryj

Our testing has been progressing on several sets of imagery: a synthetic image pair from Control
Data Corporation, an aerial scene from the Engineering Topographic Laboratory, and a building

scene of Sacramento. The latter imagery is the most relevant to the current postdoctoral contract,
and we will be demonstrating the mapping system on this data. This imagery may be sefm in
figures 4-6 and 4-8.
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6: Bitpad Instructions

6.1 Instructions for the Digitizing Tablet

6.1.1 - Introduction

The bitpad program is written in PASCAL to be run on a DEC KL-10 processor under WAITS

at the Computer Science Department of Stanford University. It has an assembly code driver to

handle input from the tablet over a normal RS-232 port (listing included also), and requires a

graphics package available locally. Replacing this package for an intended use away from SAIL

WAITS should be quite straightforward.

Locally, the bitpad may be run by typing DO TAB[S,111B]. Figure 6 shows the digitizing tablet

in use.

The initial preamble of questions deals with graphics options and line characteristics. You will
usually want some sort of graphics output, so answer yes to the first question ("Want graphics

output (y/n)?:"). Graphics choices are DD or GOD (for later display). Say y to either or both of the

questions about this. D) graphics go the Data Disc display while for viewing while you construct

an edge file, while GOD graphics are for later Graphics Output Device device independent display.

If you want little boxes drawn around the endpoints of lines, then asnwer y to ("Want boxes draw

around vertices (y/nJV"). Box size refers to the size of the box to be drawn around vertices. Small

is better for entry, large makes it easier to distinguish vertices from line nodes if you are trying

to do deletions.

On the first digitizing pass over an image you will start directly from the bitpad: later sessions will

involve adding to or editing an existing edge file. To enter an old file (or several old files), say Y

to the question ("Want to read in a file (y/n)?:"). This reads it in and displays it. For the moment

there's a problem with reading strings into PASCAL, so it tries to read NEW.VRT[S,11BJ. If
this file doesn't exist, it will give you the chance to enter another filename.. don't panic, just type

in the new name.

When that file has been read in and displayed, it lets you choose another (ad infinitum). End with

an answer o1" N (for NO) to the above question.

6.1.2 - Setting screen coordi_-at-.s

Whether you've read in a file, or not, you now set up the bitpad to enter data. It asks for the

TTYline of the tablet (50 is the current line number of the bitpad plug). You then define the

screen area on the bitpad: select the four corners with the crosshairs (lower left, upper left, upper

right, lower right) with any button, and confirm your selection by pushing button '2' ('8' says no,

try for four more points).
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6.1.3 - Adding segments and vertices

A 'segment' is made up of a start vertex, any number (even 0) of intermediate points, and an end

vertex. Vertices may belong to any number of 'segments'. Adding vertices/points/segments is as

follows:

Button: '1' defines a new vertex at the cuTrent crosshairs position, either starting a segment with
it, or ending one there. '2' locates the nearest vertex (created by '1'), and begins or ends a segment

there. '4' says add this point to the current segment list. '8' is a break. It lifts the pen. If it is
followed by a '1' or '2', then that is all it does. If followed by a '4', it puts you in the delete cycle.

If followed by another '8', you exit everything.

6.1.4 - Editing segments

You may enter the editor to delete segments at any point. You do this by keying '8' then '4' in
the above entry loop.

To delete segments, first choose a vertex attached to the segment with '1' button. Then select
either the other vertex (if there is no ambiguity) with a '1', or a point somewhere on the segment

with a '4'. You then see it erased on the screen, and you push '2' to confirm that that's the one
you want deleted, or '8' to say that its not the one you want deleted. Leave the delete cycle by

keying '8'.

If you wish to add more to the file, run it again, and this time read in the VRT file produced on

this previous pass.

At the moment, the GOD file is the sum of everything drawn on the screen during the run. To
get just the current description, you have to pass the file once more through the program; making

no changes, just reading it in and writing it out. Because of this, I recommend NOT producing a

GOD file on the 111 through n - 1" creation passes, saving it for the last run, when nothing will

be altered.

S
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Edge Format §7.2

7: Marimont Edge File Format
This section describes the format of the edge files created by the Marimont edge process.

7.1 Header

The file is binary, and begins with an 128-word header, followed by a list of linked edge iists

(ledgels); that is, after the header, there are a number of items called ledgels, each of which is a

list of edges.

The format of the header is as follows:

word interpretation

0 unused; ignore

1 unused; ignore

2 bits per pixel in input picture

3 bias of laterally inhibited picture

4 "nil-strength" flag
5 "end-of-list" flag

6 first row of picture window

7 first col of picture window

8 last row of picture window

9 last col of picture window

10 1 if contours of positive regions, -1 if those of negative regions.

11 format number of edge file (format 3 currently);

12-127 unused; ignore

7.2 Led gels

Next come one or more ledgels, followed by a word containing the end of list flag (word 5 of the

header above). Each ledgel has a two word header, a list of one or more edges, and 'a word after

the last edge containing the end of list flag. Note that this word flags the ends of two kinds of

list: the list of ledgels, and the list of edges that each ledgel contains.

Each ledgel has the followiag fo,',iat:

word intrerpret.ai3n

0 1 if the ledgel is closed, i.e. the last edge is linked

(conceptually) to the first, else 0.

I number of left turns less the number of right turns in the ledgel, as one

traverses the ledgel from head to tail.

2 beginni:g of this ikdgel's list of edges
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[one or more edges)

last end-of-list flag

7.3 Ed gel.

Each ledgel has a list of one or more edges. There are two kinds of edges, corresponding to
'.significant" and "insignificant" zero crossings in the laterally inhibited image. A significant zero
crossing is a transition of the laterally inhibited signal from positive to negative. An insignificant
zero crossing is a transition of the laterally inhibited signal from positive or negative (depending
on the sign of the region whose encircling contours are being detected, see word 10 of the header
above) to zero, and as such does not correspond to a likely edge in the original image. Their
exclusion from linked edge lists, however, seems to destroy much useful connectivity. So, we
include them as "links" and assume that one between two significant zero crossings is not a
significant break in the edge. But at insignificant zero crossings we do not estimate the strength
of~ the edge or image intensities to either side as we do for significant zero crossings. Since less
information is thus associated with insignificant zero crossings, we use two edge formats to save
space.

The format for an edge is as follows:

word interpretation

0 interpolated row coordinate of edge point (floating-point)
I interpolated column coordinate of edge point (floating.-point)
2 integer equal to 0 if edge is horizontal, 1 if vertical
3 two possible interpretations: if when interpreted as an integer, it

equals the nil-strength flag, then this is an insignificant edge point,
the edge strength is undefined, and this is the last field in the edge.
Otherwise, this edge is significant, this field should be interpreted as
a floating-point estimate of the edge strength, and the next two words
are fields belonging to this edge. all edge files as of this writing were
created by encircling positive regions (see word 10 of the header), and
in that case the edge strength is always positive, and the brighter
side of the edge is towards the left as one moves from the head of
the ledgel to the tail.

4 (significant edges only!) estimate of original image intensity to the left
5 (significant edges only!) estimate of original image intensity to the right
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7.4 Clarifications

The edge location coordinates are in picture coordinates, i.e. with respect to the original picture,
NOT w.r.t. the window in which they were detected. Integral locations correspond to pixel
centers, not boundaries, and the topmost, leftmost pixel center is taken to be (0, 0), which means
that an m X n picture has its upper left corner at (-0.5, -0.5), and its lower right hand corner
at (m - 0.5, n - 0.5) (since the indices of the last row, col are (m - 1, n - 1)

For the most part, edges are detected between horizontally or vertically adjacent pixels, which
is why there are only two possible orientations for edges. An edge is detected between two such
adjacent pixels if the laterally inhibited signal is positive at one and negative at the other. The
edge location is estimated by the linearly interpolated zero crossing between these two values.
Edge strength is the difference between laterally inhibited intensities one pixel to either side of
estimated zero crossing (in the directions normal to that of the zero crossing); linear interpolation

is used to estimate each of these intensities, since the points at which they're measured usually
fall between pixels. The strength is scaled down to correspond to the difference between adjacent

pixels (i.e. the strength measure is laterally inhibited contrast per pixel unit measure). Image
intensities are estimated at these same points, i.e. one pixel to either side of the interpolated zero
crossing, in an analogous way, by linearly interpolating between each pair of image intensities.
However, both image intensities are retained.

The reason for the "for the most part" in the first line of the paragraph above is that "extended"
zero crossings are detected in the current implementation. An extended zero crossing is three
adjoining pixels in a row or column with one end pixel positive, one end pixel negative, and the

A middle pixel zero (values refer to the laterally inhibited signal). The estimates of edge location

and strength and left and right image intensities are made just as in the above: the location of the
edge is an interpolated zero-crossing, the edge strength is the (scaled) difference in (interpolated)
laterally inhibited pixel values one pixel to either side of the estimated location, and the left and

right image intensities are interpolated image intensities one pixel to either side of the estimated

location.
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8: Conclusions
8.1 Summary

A principal research interest of our group is in developing a rule-based advanced automated stereo
mapping system to function within ACRONYM [Brooks 19811. Current mapping techniques ignore

much of the information available from inference on single views of a scene. This information

can be useful for three-dimensional surface interpretation, and also provides extra parameters

for stereo matching (i.e. surface orientation, occlusion cues). Our research effort is directed at

establishing such monocular inference rules in a rule-base for stereo mapping.

In deriving these rules, we perform analysis of both hand extracted and automatically produced

edge descriptions. A facility has been developed under the current postdoctoral contract for

this manual edge extraction from hardcopy imagery. We have studied rule synthesis for several

cises, including that of orthogonal trihedral vertices - features that dominate cultural scenes.

This research is very promising, and has shown the utility of the rule-based approach to surfae

inference from mono(:ular information. We will be continuing our research in rule synthesis under

other funding.

Camera solving provides powerful constraint on the correspondence problem in stereo matching.

We have developed a facility under this contract for interactively registering images, determining

the parameters for transforming them (or their edge descriptions) into collinear epipolar space,

. and performing the actual image transformation. This determination is crucial to a mapping

process. Incorporating an automated module to provide data for the camera solving is a very

important next step.

We have experimented with an existing stereo mapping process, enhancing its flexibility with

respect to image format and with respect to edge operator format, and have been preparing

example outputs of its processing on new imagery. Our intent with this effort has been to show

the capabilities of a local matching process and to assess its applicability to the planned rule-based

system.

'-.2 Demonstrafion

We will be demonstrating the following for RADC later in May:

a) an interactive digitizing test facility;

b) the use of image edge descriptions produced using this facility and from
an automated process [Mariinont 19821 in synthesizing rules for stereo
matuhing;

c) eyimination of Orthogonal Trihedral Vertex (OTV) inference rules;

N
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d) development of a system for registration of image pairs;
e) analysis of stereo imagery with an automated stereo procem.

Our demonstration will also present related equipment and system facilities that we use in supportof this and other vision research.
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9:iizn Digitizin Prora

See sections 2 and 6 for documentation on using this program.

(SO+){SH :200001
Program Tablet(tty~vartfile);

CONST
CHOP- 100000;
PI 3.14159265;
DDX =432.0: DDY - 432.0: GOD - 512.0;
lfx *40.0:

maxdifference-0.05: ( one twentieth of screen away

(to hold the lines associated with a vertex, incoming lines are negative.)
TYPE

LINESPTR-tl inestype;
1 inestype-record

line: integer;
nextline: llnesptr;

end;

{to hold the vertices with their associated coordinates and lines
VERTLISTPTR-'vertl 1st;

vertlist-record
vertex: integer;
x .y: real;
header :1inesptr;
nextvert:vertl istptr;

end;

(to hold the points associated with a line
POINTPTR-tpoint;

point-record
xp.yp:real;
nextpt :pointptr

end;

{to hold the lines with their associated vertices and points)
LINELISTPTR-tlimel 1st;

1 mel ist-record
linenum.initvert~finalvert:integer;
header :p0 in tptr;
nextline:1 n31 ist,.

end;

TEMPARRAY-array[l. .20J of integer;
STRNG-packed array[1:30] of ch,.r;

INTFILE- FILE OF INTEGER; {For graphics

Var savex.saveyX1.Y1,X2.Y2,X3.Y3.X4.Y4,MINIX.MOINY:reol;
s ignold .oldvert. linenum. pich. p ic .vertcount~linecount. verta *vertb: integer:
dx,dy.gx.gy.Istx.lsty.ttylil.e.boxuize:integer; {for drawing (x~y)
theta. REAL . REALY: real:
81,82. answer.auirnchar :char;
TABLETIO.Jun~p.finished.drdgra-h.LAST4,BOXFLAG,boxgod,

tocaof i,.r.:c'nL.!7XG' -P'F,T.r3dini:i~~ .3n;
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vertfileinflie:text;
filename:strng;
vl.startvert.tailvert.

tptr.vptr:vertlistptr; ( vertex list )
newlptrlptr.1,

scanptrlstscanptr:linesptr; { lines of vertex list )
11,startline.tailline.

sptr.savsptr.lstsptr:linelistptr: { line list)
firstp,p,oldppptr:pointptr; ( points in line list )

godfile: INTFILE: { GOD files for plotting )
SWITCH: RECORD { Little hack for putting reals Into integers )

CASE FOO:BOOLEAN OF { for 600 files I
TRUE: (I:INTEGER);
FALSE: (R:REAL)

END;

external DO graphics procedures in GPAS.REL[TST,AAM] }
procedure ginit; extern; init I
procedure scrset: extern; { clear screen I
procedure width(w:integer); extern; [ no-op )
procedure drken: extern: { make line dark }
procedure liten; extern; { make line light )
procedure inven: extern; { swap above )
procedure move(x.y:integer); extern; { invisible line to x,y I
procedure draw(x.y:integer); extern; ( visible line to x,y )
procedure dpyup; extern: { draw to screen )
procedure inchar(var key.ctlkey.metakey:integer): extern:
procedure bitini(line:integer); extern; { init tty for input I
procedure bitpad(var resull.resul2,resul3:integer); extern; { tablet input )
function ttytab(var ?sull,resul2.resul3:integer):boolean; extern; {tablet or tty test I
procedure ppset; extern; ( set page printer )
procedure ppdone; extern; { release page printer )

( READTABLET DISTANCE INITTEMPARRAY GRAPHICS (DO AND GOD) I

Procedure READTABLET(var B:char;var X.Y:real);
var TIX.IY:integer;TA:real;

f This procedure reads In data from either the terminal or the tablet.
The data consists of which button was pressed, and the coordinates
of the point at which it was pressed. The boolean TABLETIO indicates
whether the procedure is reading from the tablet or from the terminal. I

Begin
if TABLETIO than

begin
bitpai(T.IX.IY).

( IF TTYTAB(TIX.IY) THEN WRITELN(TTY.'tty activity');)
{ writeln(ttyt:0.* ",ix:0," *.iy:O); )

B:-chr(48+T):X:=IX;Y:-IY;
end

else
begin

readln(tty):
read(tty.B);read(tty.X);read(tty.Y);

end;
End;

PROCEDURE GETCOORDS;
Begin
READTABLET(31,X.Yt);
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REALX (XI-MINX)/picw; REALY :.(Y1-MINY)/plCh;
If REALX < 0.0 THEN REALX:0O.0

ELSE IF REALX > 1.0 THEN RE*ALX:1I.0;
If REALY <0.0 THEN REALY:0O.0

ELSE IF REALY >1.0 THEN REALY:.1.0:
( writeln(tty.'B1-',B*BI, Xl-' ,X1:0.'(*.REALX:5:3.'), Yl.', YI:0,'('.REALY:5:3, ')');)

End; i

FUNCTION ASK(N:integer): BOOLEAN;
VAR goodans:BOOLEAN;

Begin ( ASK )
goodans :-FALSE;
Repeat

case N of
1:WRITE(TTY2'Want Tablet 10 (yin)?:');
2:WRITE(TTY,'Want graphics output (yin)?:');
3:WRITE(TTY.' to the DO (yin)?:');
4:WRITE(TTY,* to the GOOFILE (yin)?:');
5:WRITE(TTY. 'Want to read in a file (y/n)?:');
6:WRITE(TTY. Happy with this frame (yin)?:');
7:WRITE(TTY, *Want to DELETE segments (yin)?:');
8:WRITE(TTY,'Do another deletion (yin)?:');
g:WRITE(TTY. 'Is this the line to be deleted (yin)?:');
lO:WRITE(TTY,' Want boxes draw around vertices (yin)?:');
ll:WRITE(TTY, ' Want frame drawn in GOD file (yin)?:');
12:WRITE(TTY.' Want to add to file from TABLET (yin)?:');

End;
readln(tty);read(tty.answer); if(answer - 'y') or (answer -'Y') then

Begin ASK:-TRUE;goodans:-TRUE; End
else Begin ASK:-FALSE;goodans:-TRUE; End;

UNTIL goodans;
End; { ASK v

Function DISTANCE(XI, Y1, X2. Y2: Real):Real; (Finds the distance bet. 2 pts.)
begin

distance:- Sqrt (Sqr (X2 - XI) + Sqr (Y2 Y1V));
end;

* Procedure INITTEMPARRAY(var a:temparray);
var i:integer;

begin
for 1:- 1 to 20 do

end;

Function MAX(a,b:lnteger): INTEGER;
Begin

IF A > B THEN MAX :- A ELSE MAX :* ;
End;

(Routines to make GOD files)

PROCEDURE OUT(N:INTEGER);
BEGIN

GODFILEt :- N: PUT(GODFILE)
END.

PROCEDURE OUTREAL(V:REAL);
BEGIN

SWITCH.R :;
OUT(SWITCH. I)

E ?JL);

PROCEDURE PLOTLINE(XI.YI,X2.Y2:REAL):
BEGIN

OUT(7); {LI"IE
OUTREAL(Xl): OtU'T:7L(Y1);
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OUTREAL(X2); OUTREAL(Y2):
OUT(O) (THICK

END;

(Procedures to display graphics on the DO terminal.}

Procedure BOX;
Begin ( BOX
IF BOXFLAG THEN

Begin
IF DDGRAFX THEN

Begin
MOVE(dx-boxsize~dy-boxsize);DRAW(dx-boxsize.dy+boxsize):
DRAW(dx+boxsize.dy+boxsize);Oraw(dx+boxsize.dy-boxslze);
Draw(dx-boxsize~dy-boxsize);NOVE(dxdy);
If NOT(READIN) THEN DPYUP;

End;
IF GOOGRAFX THEN

Begin
PL.OTLINE(GX-boxsize.GY-boxsize,GX-boxsize.GY+boxsize):
PLOTLINE(GX-boxSize.GY+boxsize.GX+boxsize.GY+boxsize);
PLOTLINE(GX+boxsize.GY+boxsize.GX+boxsize,GY-boxsize);
PLOTLINE(GX+boxsize.GY-boxsize.GX-boxsize.GY-boxsize):

End;
End;

End; { O

procedure DARKDRAW;
Begin

IF GOOGRAFX THEN
Begin

gx: =round( realx*GDD):
gy:= round(Iealy*GOO):

End;
IF DDGRAFX THEN

Begin
dx round(realxD0DX+lfx);
dy round((1.O-realy)ODDY);
MOVE(dx~dy);
IF NOT(READIN) THEN OPYUP;

End; move if DD, nothing if GOD
End;

procedure LIGHTDRAW;
Beg in

IF GOOGRAFX THEN
Begin

lstx:-gx; lsty:-gy;
gx:round( real xGD0);

gy:. round(realy*GDD):,
PLOTLINE( 1stx .1Sty .gx .gy);

End;
IF DOGRAFX THE:J

Bagin
dx :~round(realxOODX+lfx);

dy round((1.O-realy)00DY);
DRAW(dx.dy);,
IF NOT(READIN) THEN DPYUP;

End;
End;

PROCEDURE FR.-'t.1;
Begin { FRA;4E )

realx:.O.O~realy:-O.O;OA3XORA*W; D3AiA FRAME AROUA~D SCIEEN
realx:=O.O:realy:-1.O;LIGHTDR'W;
realx:.I .O:realy:2I.O;LLGHfDR. f:
realx:-.O;reily:-O.O;LICTCiP I;
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End;( FRAME)

PROCEDURE GODINI;
Begin ( GODINI
REWRITE(GODFILE.*TAH.GOD');
OUT(97): (DDINIT
OUT(I); {SCREEN
OUTREAL(O.O);
OUTREAL(O.O);
OUTREAL(GOO);
OUT REAL (GOD);
OUT(4): LITEN
BOXGOD: .ASK(I1);
If BOXGOO THEN FRAMEDRAW;

End; j GODINI )

PROCEDURE GOOFINI:
VAR I:integer:
Begin ( DPYUP and KILJOB

OUT(17): (DPYUP
OUT(-I):
OUT(-I):
FOR I :- 1 TO 32 DO OUT(O) {KILJOB

End; ( DPYUP and KILJOB}

PROCEDURE DDINI:
Begin { DOINI

PPSET; (set up small page printer for text
ginit:
scr set;
ORKEN: ( dark here so's works like SUN}
IF not(GODGRAFX) THEN FRA94EDRAW; ( frame if just DO

End: ( ODINI}

PROCEDURE DOFINJ:
Begin ( page printer clear

PPDONE;

End: ( page printer clear}

{ INITLINELIST. INITVERTLIST, ENTERLINE. ENTERVERTEX, ADDLINEPTA
Procedure INIrLINELIST;
(this initializes the list of lines)

Beg in
new(11):
11t nextl ine:.nil
11 header:-nf11
startline: 11;
tail line: *l 1

End: (INITLINELIST)

Procedure INITVERTLIST:
(this initializes the list of vertices)

Begin
4 new(vl )

vll.header:.nl:
startvart :-vl;
tailvert:-vl;

End: (INITVERTLIST)

Procedure ENlERI E:
-is cuts t~ia line into 1i.t
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Begin
liflecount: =1iflecount+1:
tailflnet.linenum:-linecount,
tail11 net ml tvert: -verta;
taillinet.finalvert:.vertb;
taillinet header: - i rstp:
firstp:-nil;
new(11);

taill ine:-Il
tail11inet next 1 me: -nil;

End; (ENTERLINE)

Procedure ENTERVERTEX:
starts a new vertex

Begin
tail~vertt a: .REALX;
tailvertt.y:-REALY;
vertcount : vertcount+I;
tailvertt.vertex:-vertcount;
tailvertt.header:-nil:
new(vl;

tail vert:-vl;
taiivert*.nextvert:-nil;

End: ( INYERVERTEX )

Procedure ADDLINEPTR(line.vertnum:lnteger);
this adds a line to the linked list of lines associated with a vertex

Beg in
v

1 : start ver t:
while v1,.vertex <> vertnum do vl:-vlt.nextvart;
1 pt r := v 1 header:
if lptr - nil then

begin
new(newlptr);
vl^.header:-newlptr:

end
else

begin
while lptrt.nextline <> nil do lptr:-lptrt.nextllne;
new(newlptr);
lptrt~nextline:-newlptr;

end:
newlptr t line:-line:
newlptrt.nextline:-nl;

End: {ADDLINEPTR)

Procedure FINDC)LDVERTEX(var vptr:vertlistptr~var oldvert: lnteger~xold,yold:real);

(This finds the old vertex which is nearest to the point at which B2 was
pressed If the nearest old vertex is further than maxdlfference away, it
tells how far away it is.

var vertnurn:integer;
tptr:vertl lstptr:

Begin
tptr :-startvort;
vptr : startvert:
while (tptr<>tailvert) do
begin

if DISTAI'CE(tttxtttyxlyodDIT.:(-,ttxvttjol,31' '.',
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vpti':-tptr;
tptr:-tptrt'. nextvert:

end;
ol dvert: .vpte . vertex;
if (DISTANCE(vptr'r A, vptrt'.y.xold.yold)>maxdlfference) then

writeln(tty,'the nearest old vertex is *,DISTANCE(vptrt.x.vptri'.y.xold~yold):4:
2.' away');

End; (FINDOLDVERTEX)

PROCEDURE AINVERT(vert: integer):
Begin

tptr: -startvert;
while tptrt.vertex<>vert do

tptr:-tptrt .nextvert;
REALX:-TPTR . X ;REALY: .TPTRt .Y;

End;

FUNCTION FINDOLDPOINT(var retsptr:linellstptr;TESTX.TESTY:real): BOOLEAN:
{This finds the old point which is nearest to the point at which B2 was

pressed. If the nearest old point is further than maxdifference away. it
tells how far away it is.

VAR OLDDIST:REAL;

PROCEDURE SEARCHPOINT(vlptr:lirnesptr;xold.yold:real):
Var tstsegnum:integer;

Begin
tstsegnum:-ABS(vlptrt.line); (get linenumber)
sptr:-star'tline;
while sptrt.linenum<>tstsegnum do

Sptr:-Sptrt.nextllne;
pptr:-sptrt.header;
WHILE pptr<>NIL 0O

Begin
IF DISTANCE(pptrt.xp~pptrt.yp.xold.yoid) < OLODIST THEN
Begin

OLDDIS' :-ISTANCE(pptrt.xp,pptrt.yp.xold~yold);
savsptr:-sptr;

* End,
pptr: =pptrt. nextpt;

End;
End;

Begin
AIMVERT(verta);
savsptr:-nhl
scanptr:.tptrt header;
OLDUIST:-1.O;
REPEAT

SEARCHPOINT(scanptr.TESTX,TESTY):
scanptr:-scar.ptrt. nextliIns;

UNTIL scanptr - nil;
IF OLDDIST >maxdifference THEN

Begin
{ WRITELN(TTY. 'No such point on a line from that vertex');

F IrDOLDPOINT: -FALSE:
Er'd

ELSE

verta:.'avsptr.nitvirt;
vertb:-savsptrt.fin3lv,,rt;
retsptr:.s3Vsptr; (copy bsck for raturn)
FIFJDOLC7O. f:-TR',E;

End;
End; (FlI..CL 701-T)
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Begill
verta: .segPtrT. mltvert;
vertb*-segPtrt.flnalvert;
GRAPHIC;
AIMVERT(verta); DARKDRAW; ( start drawing)
pptr:.segptrt .heacer;READIN:-TRUE;
while pptr > nil DO

Begin
REALX : .ptrt xp ;REALY: -pptrt .yp;

LIGHTDRAW;
End;

AIMVERT(vertb) :LIGHTDRAW:READIN:-FALSE;
DPYUP:DRKEN: ( finishing drawing

END;

FUNCTION CHECKOLDVERTEX(var retsptr:lineliStptr): BOOLEAN;
Var tstsegnwim.checksegnum: integer:

tstvptr :vertl1istptr:
scnvl ptr:l inesptr:
TSTT :BOOLEAN:

FUNCTION CHECKVERTSOFL!NE: BOOLEAN;
Begin

tstsegnum:-A6S(scanptrt.line): (get linenumber)
scnvlptr:-tstvptr'.header; scan vertex line list
check segnum:--1;
WHILE ((scnvlptr <>NIL) AND (tStSegnui ,hecksegnum))

DO Begin
chec s egnum:-ABS( scnvlgptrt. line);
scnvllptr:=scnvlptr1.neAtlin9;

End;
IF tstsagnum <> checksegnum THEN

Begin
CIECKVERTSOFLINE:-FALSE;
scanptr:zscanptrt.nextline;

End
ELSE CHECKVERTSOFLINE:-TRUE:

End:

Begin
a retsptr: =nil;

FINDOLDVERTEX(tstvptrvertb,REALX.REALY);
savsptr!=nil; ( tptr and tstvptr
scanptr:=tptr . header;
TSTT:-FALSE;
WHILE ((scanptr <> NIL) AND NOT(TSTT))

DO TSrr.-CHECKVERTSOFLINE;
IF TSTT THEN

Begin
sptr:-startl me:
while sptrt.linenum<>tstsegnum do

sptr:-Sptrt.nextline;

ret.,ptr:*Sptr;
CHECKOLDVERTEX :TRUE;

End
ELSE CHECKOLDVERtEX :*FALSE

End: ( CHECKOLOVERTEX )

PROCEDURE DELETESEG(segrptr:linelistptr);

PROCEDURE DELSFR0MV(vertnum:int:;;ar);.
Begin

AIMVERT(vertnum);
scanptr :-tptr . heador;
lstscanptr :-tptrt.hd~der;
while ABS(sizanptrt.lilae) <> liointim C1

Beg in



scanptr:-3canptr1t.nextline;
End;

IF scanptr-tptrt.header then tptrl.header:-scanptrf.nextline
ELSE Istscanptrt .nextline--scanptrt.nextline;

End;

Begin
verta: .segptrt. initvert;
vertb: -segptrit.finalvert;
1 inenum:.segptrt.l1inenum;
DELSFROMV(verta); ( removeline from start vertex list)
DELSFROMV(vertb); { removeV ins from end vertex Hist)
sptr:-startline;
lstsptr:-nil;
while sptr <> segptr DO

Begin
1 stsptr *sptr;
sptr : sptr . nexti ins;

End;
IF lstsptr-nil THEN startline:-Sptrlt.nextline
ELSE Istsptrt.nextline:.sptrt.nextline;

End; { DELETESEG )

PROCEDURE DELETEPHASE;
var segptr:linelistptr;

PROCEDURE SETDELETION:
Begin

FINDOLDVERTEX(tptr~verta,REALX,REALY);
GETCOORDS; {select line or vertex point
T:-FALSE;
CASE B1 of

'V: T:- CHECKOLDVERTEX(segptr);
4': T:- FINDOLDPOINl'(segptr.REALX,REALY);

others: Writeln(tty. '1 for vertex; 4 for point')
End.

IF T THEN
Begin

REMOVETESi (segptr,LITEN.TRUE);
NEEOCONFIRM:-TRUE;
writeln(tty. '<B-2> for confirm, <8-8> for reject deletion');

End
ELSE writeln(TTY, 'Couldn''t delete line (from vertex '.verta:O ')');

End; { SETDELETION)

PROCEDURE ERRMSG;

Bgnw riteln(TTY, '81 or 4 for deletion, B-2 for confirm, B-8 for reject/quit');
End;

Begin ( Deletes segments
PPSET; N
writeln(TTY, 'Select vertex <8-1>. then vertex <B-1> or point on line <B-4>.; <B-8> quits.'):
write(TTY,' Once selected. <8-2> confirms deletion, <B-B> cancels it.');

FINISHED: -FALSE;NEEDCONFIRM: FALSE;
REPEAT

GETCOORDS; (select vertex)
CASE BI OF
'V': IF NOT(NEEDCONFIRM) THEN SETOELETION

ELSE ERRMSG: (CHOSE THE LINE TO DELETE)
2': IF NEEDCONFIRM THEN {THIS IS CONFIRIIATION

Begin
DELETESEG(segptr) ;NEEDCONFIRM:-FALSE;
writoln(tty, 'For deletions B-1 then I or A; 8-8 is quit');

End
ELSE ERRNSG;

'8': IF NEEDCONFIRM THEN {THIS IS REJECTING THE DELETIOAd
Begin

REMOVETEST(semptr.DRKEN.FALSE);NEEDCO'!FIRf:-.2S'-!;



52
writeln(tty. 'For deletions B-I then I or 4; 8 is quit'):

End
ELSE Flnlshed:-true;

OTHERS: ERRMSG
END: OF CASE}

UNTIL FINISHED;
T:-TRUE;FINISHED:-FALSE;LAST4:-FALSE:
writeln(tty. 'Returning to entry mode');

End:( Deletes segments

PROCEDURE LASTOELETE: last chence et deleting
Begin

PPSET;
Writeln(TTY. 'DELETE? <8-2> for YES. 48-8> for NO');
T: -FALSE;
REPEAT

READTABLET(BI. X4. Y4);
CASE BI of

'2': DELETEPHASE; (do deletions)
'8': T:-TRUE:

others: writeln(TTY. '<B-2> for deletions or <B-8> for none')
End;

UNTIL T;
End;

Procedure STARTOLDVERTEX;,

fThis procedure finds an old vertex, enters the number of the incoming
line in the linked list of lines associated with it. enters the number
of the old vertex in tne line buffer, and calls ENTERLINE to move the
contents of the buffer into the linked list of lines. It then draws a
line to the old vertex.

var linenum,oldvert:integer;

Begin
toconfirm:-false:LAST4:-FALSE;

if jump~ then
begin [ jump}

FINDOLDVERTEX(vptr~oldvert,REALX.REALY);
REALX: -vptrt .x:REALY: -vptrt.y:
verta: =oldvert;
jump:-fal so:
if ddgraph then DARKDRAW;

end {jump}
else

begin {no jump)
FINDOLDVERTEX(vptr,oldvert.REALX.REALY):
vertb:-01 dvirt;
REALX:.vptrt. x;REALY: .vptrt.y;
ENTERLINE;
ADDLIINEPTR(l1inecount,verta);
ADDLINEPTR(-l inecount.vertb);
if ddgraph then LIGHTDRAW;
verta:.ol dvert;

end; { no joirp )
End; (STAR7OL.7RTEA)

Procedure STA~..'E.7 -X;

(Til;~j- c.- :z 'I r:.'n't' ii t%3 llnkrd list of v-.tics3
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which contains the number and coordinates of the vertex. a,,d .Jds
the vertex number to the line buffer. If the vertex is at the end
of the line (if 84 has been previously pressed to add points to that
line). it calls ENTERLINE to add the contents of the line buffer
to the linked list of lines. It also draws a line to the vertex. }

var linenum:integer;

Begin; {STARTNEWVERTEX)

toconfirm:-falso;LAST4:-FALSE;
if jump then

begin { jump )
ENTERVERTEX;
verta:-vertcount;
jump:-false;
if ddgraph then Begin DARKDRAW:BOX End;

end (jump)
else

begin { no jump I
ENTERVERTEX;
vertb:-vertcount;
ENTERLINE;
ADDLINEPTR(linecount.verta);
AOOLINEPTR(-1inecount.vertb);
if ddgraph then Begin LIGHTDRAW;BOX End;
verta:-vertcount;

end; { no Jump )
Eno; (STARTNEWVERTEX)

Procedure NEWPOINT;
{ This procedure adds the coordinates of a new point to the linkod

list of points which are associated with a vertex. )
Begin

IF toconfirm then DELETEPHASE
ELSE

IF NOT(JUMP) THEN
Begin

If firstp-nil then
begin

new(p);
firstp:-p;
oldp:-p

end
else begin

new(p);
oldpt.nsxtpt:-p;
oldp:-p;

end;
pt.xp:-REALX;pt.yp:-REALY:
pt.nextpt:-nil;

if ddgraph then LXGHTDRAV;
LAST4:-TRUE;

End
ELSE WRITELN(TTY,'Put the pen dotn first');

toconfirm:-false:
End; {NEWPOIIT)

( UTILITIES I

FUNCTION REAOINFILE:1''I.M;
VAR basala.baszvc:t..i ,
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TVAL:BOOLEAN;
tptr :vertl lstptr;

Procedure READVERTS;
( This procedure reeds the VERTICES from the vertfile)

Begin
baseline: -1inecount;basevert: -vertcount;
read(infile.dumchar.dumchar.dumchar);
read(infile,numverts); { get past 'V -' for N)
reedln( iflie);
FOR I:- I to numverts DO
Begin

read(infile~vnum.dumchar~dumcher.REALX.dumchar.REALY.dumchar~duachar).
( number, coorda. coordb

E~fERVERTEX;
while not(eoln(infile)) DO

Begin
read(inflle.oldline);
IF oldline < 0 then signold:--l else signold:-1;
oldi ine:-ABS(oldline); oldllne:-(oldline+baseline)Oslgnold;
ADDLINEPTR(oldl lne~vnum+basevert):

End;
readln(inmule);

End;
vertcount :~basevert + numverts;
linecoun.: baseline;

End: { READVERTS )

Procedure READLINES:
(This procedure reads the LINES from the mufle

PROCEDURE VINDANDDRAW(vert:integer;procedure FUNC);
Begin

tptr: =startvert;
while tptr1t.vertex<>vert do

tptr:-tptrt nextvert;
PEALX:-TP'Rf.X;REALY:-TPTRt.Y:
FUNC;BOX;

End;

Begin
readln(infile~dumchar~dumchar.dumcharnumlines): get past 'V *for N)
FOR I:- I to numlines DO

Begin
read(infile.lnum.dumchar~dumchar~vertadumchar~vertb.dumchar.dumchar);
verta:-verta+basevert;vertb:-vertbbasevort:
IF ddgraph THEN FINDANDDRAW(verta,DARKDRAW);
firstp:-nil;
while not(eoln(inflle)) DO

Begin
read(infile~cdumchar,REALX.dumchar.REALYdunchar):
NEWPOINT;

End:
IF ddgraph THEN FINDANDORAW(vertbLIGHTDRAW);
ENTERLINE;
readln( lnf 116);

End;
End; (READLINES)

Begin
TVAL:-ASK(!):
IF TVAL THEN

begin
PPSET;

{ WRITE(TTY,'Filename:');)
( ~READLN(TTY.filetian9:QUANT:[ ))
( WRITELN(TTY.QUAHT:D);
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4' readin:*true;

READVERTS;
READLINES;

IF (ddgraph and ddgrafx) THEN DPYUP;
End;

READINFILE : TVAL;
End; ( READINFILE

Function MAG(Xl. Yi. X2. Y2: Real):INTEGER; {Finds the distance bet. 2 pta.
BEGIN

MAG:- round(Sqrt (Sqr (X2 - XI) + Sqr (Y2 - Y))
END;

Function ANGLE (XI, Y1. X2, Y2: Real): Real; (Finds angle theta bet. 2 lines)
VAR X.Y.,.lt:roal;

BEGINd
X :~X2 - XI;
Y Y2 - Yl;

IF abs(X) > abs(y) THEN
xLT Arctan (Y/X)

ELSE xLT :-(P1/2) - Arctan (X/Y);
angle :- xlt;

END;

FUNCTION INITTABLET:BOOLEAN;
Begin

Writein (tty. 'Lower-left corner:')
READTABLET(BI. X1. VI);

Writein (tty. 'Top-left corner:')
READTABLET(O1. X2, Y2);

Writeln (tty. 'Top-right corner:')
READTABLET(BI. X3, Y3);

Wr'iteln (tty. 'Lower-right corner:')
READTABLET(BI. 94. Y4):

( 'nese calculations are dumb )
minx :~XI: miny :- VI:
Theta :((ANGLE(XI. VI. X2. Y2) -Pi/2.0) + ANGLE(X2, Y2, X3. Y3) +

(ANGLE(X4. Y4, X3, Y3) - P1/2.0) + ANGLE(X1. YI, X4, Y4)) /4.0;
pich :M AX(MAG(XI. Y1. X2, Y2).P4AG(X4, Y4, X3. Y3));
picw MAX(MAG(X1. VI. X4, Y4).MAG(X2, Y2, PX3 Y3));
Write(tty.'Theta.'.theta:5:3,' height-',pich:O.' width-'.picw:0);
Writeln(tty. - <-2>. confirms. <8-8> rejects');
REAOTABLET(B1. X4. Y4);
CASE 81 of

'2:INITTABLET:.l'RUE; (make sure happy with ttlis
'B': INITTABLET:-FALSE;

others: writeln(TTY.'2(confirm) or 5(reject)*)
End;3

End;

PROCEDURE WRIrEFILE:
TYPE bigarray-arrayEI. .500] of integer;
VAR VTRAN.LTRAN:bigarray:

VCOUNT.LCOUNT: intsger;

PROCEDURE BUIDVITA4IE;
Begin

VCOUNT: -0:
while (totr<>.tailvert) do

53gin
verta: *tptr . verteK;
IF tptrt.1'eader <> nil then

VTRAJ~verta) :*VCO.2 T;
Er.j

E'-' 1u.01
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tptr: .tptrl.nfextvert;
End:

sptr:-startllne;
LCOUNT:.O;
while sptr <> tailline do (no nulls in sega.. they've been removed

Begin
1 inenum: .sptrtlinenum;
LCOUNT:-LCOUNT+1;
ITRANl inenum):-LCOUNT
sptr: .sptr1t.nextline;

End,
End;

Begin {WRITE OUT VERTICES AND EDGESI
{write file with entries:

V - the number of vertices.
<vertex entries> (N of them),
L - number of' lines,
<line entries> (M of them).)

BUILDVITABLE; {make index transforms for vertices and lines
writeln(tty,'V * .VCOUNT:O. , L - '.LCOUNT:O);

(do Vertices )
writeln(vertfile. V - ',VCOUNT:0.' height - '.pich:0.', width * .picw:O.' (nsa)*):
v :-Startvert;
repeat

verta:-VTRAN[vlt .vertex);
IF verta >0 then wrlte(vertfile~verta:O.':('.vlt.x:O:3.','.vlt.y:O:3.'):');
1 :vlt.header;

if l<>nil then
repeat

linenum:-l1t.line:if linenum>0 then signold:.I else signold:.-l;
linenum:-signold*LTRAN[ABS(linenum)J;
write(vert'ile.' .linenum:0);
1 :.1t.nextline;

until 1-nil:.
IF verta > 0 then wrlteln(vertfile);
vi :-vlt.nextvert;

until vi-tailvert;
{do Lines )

writeln(vertfile,'L - .,LCOUNT:O);
11 :*startline;.
repeat

LINENUM:-LTRAN~llt. linenum]:
write(vertfile,LINENUM:0. ':<' ,VTRAN[llt.initvertJ:-O. . .VTRAN[llt.finalvert):O. '>: );
p:111'. header;

if p<>nil then
repeat
write(vertfils2('.pt.xp:0:3.*'.pt.yp:O:3.')');
p:-pt .nextpt;

until p-nil;

until il-tailline;
End; (WRITE VERTICES A'4D EDGES

{(MAIN PROGRAM ST.ITS:)

Begin
writeln(tty,'Dijitizing 7ablet; Button Functions:');
writeln(tty. ' 1: start a new vertex (either fresh, or as the end of the current');
writeln(tty.' arced segment');
writeln(tty. ' 2: find the niarast vqrtex to this point, and treat it as the end');

w:*it:)"r.(tt. ,' (cr ztart) of cirr:rnt 2rccd 3::7:nt"1;



writeln(tty.' 4: take this point'); 5
writeln(tty.' 8: lift Pen;*);
wrltoln(tty,' if next is 'I or 2 then CONTINUE drawing');
writeln(tty, ' if next is 4 then do a DELETION');
writeln(tty,. if next is 8 then QUIT');
DDGRAPH:-ASK(2);
IF ODGRAPH then

BEGIN
DDGRAFX:-ASK(3);
GODGRAFX : ASK(4);
BOXFLAG: -ASK( 10);
If BOXFLAG THEN

Begin
write(tty.' Box sizo(1.2):');
readln( tty) ;read(TTY,boxSize);

End;
IF GODGRAFX THEN GODINI;
IF DDGRAFX THEN DOINI;

END;
Rewrite( vertfilie);
firstp:-nil;vptr:-nil;vertcount:.0;linecount:.O;
INITLINELIST; INITVERTLIST;
REPEAT T:- READINFILE UNTIL NOT(T);
TABLETIO:=TRUE :DOTAB:-TRUE;
IF READIN THEN DOTAB:-ASK(12);
IF DOTAB THEN
Begin

write(tty.*TTY1 ins number:');
readln(tty) ;reao(tty.ttyline);
bitini(ttyline):
REPEAT T:-INITTABLET UNTIL T; (get corners of image)
PPSET:
writeln(tty '*Ready*');
readin:-false;finished:-false;toconfirm:.false;jump:-true;LAST4:-FALSE;
firstp:-nil;
repeat
GETCOORDS;

case 81 of
'I' :STARTNEWVERTEX;
'2' :STARTOLDVERTEX;
'4' :NEWPOINT;
'B' :88gi

IF NOT(LAST4) THEN
Begin

if toconfirm then finished:-true
else Begin

toconf irm: -true;
writeln(tty,'*Pen is UP*');

End;
jump: *true

End
ELSE writeln(tty. 'put the pen down first');

End;
others:Wrlteln(tty. 'Garbled date')

end;
until finished;

End;
IF DOGRAPH THEN

Begin
IF GODGRAFX THEN GOOFINI ELSE IF DDGRAVX THE*I DCFI.JI;

End;
WRITEFILE;

End. {MAItI)



:code to allow PASCAL to get BITPAD data from TrY other then job's TTY
Macro-1O assembly code, with local code for TrY driver

title trace

i tem-.O

sc2--2
sc3--3
Sc4-.'
p-0~17
MODE..O ;ASCII
JOBFs-tO12l
Chnsts-t0716000000000
ttySkp-tO047000400116
PPIOT-.0702000000000
DOEEP=-TO0470004ool11 ;BEEP UUO DEFN
DPYCLR-.tO7O1O0OOO000O
INS9IP-0051540000000
SLEP-"'OO47000000031
OPDEF PPSEL[PPIOr 0.)
OPOEF PPACT(PP!OT 1.]
OPOEF OPYPOS[PPIOT 2.)
OPOEF OPYSIZ[PPIOT 3.]
OPOEF PPREL[PPIOT 4.1
OPOEF LEYPOS[PPIOT 6.]

.8dix 10

entry 8ITINI ,BITPAD.PPSET.PPSET2,PPDONE.TTYTAB

BI1'INI: POP P.RETAD
MOVEM SC2.LINE :LINE PARAMETER PASSED BY VALUE
P4OVEI SC3.tO17

BITLOP: HRRZ SC1,SC3 ;GET A CHAN TO TEST
LSH SCI,18+5
OR SCI.[CHSTS SC2)
XCT SCI
TR4E SC2.TO40O000 ;UJSED ALREADY?

SOJGE SC3.8ITLOP ;TRY UNTIL NONE THERE
J1UMPL SC3.NOCHJS
HRRZS SC3
1514 SC3.5
HRLZM SC3.CHAN ;THIS IS THE CHANNEL
MOVE ITEM.[TTYSKPJ
JOR ITEMCHAN
MOVEM ITEM.BITCHK
MOVE ITEM,LINE
SETZ SC2,

LIftIOP: IDIVI ITEM.10 :TREAT AS DEC1IMAL NUMBER (ALTHOUGH IT IS OCTAL)
ADD! SC1,TO20
LSHC SCI.-6 ;SIDE IT OVER
JLJMPN ITEM.LINLOP ;GO TILL DONE
HLRM SC2.BITDVC+I :LINE IN SIXBIT

IITOPN: MOVE ITEM,[OPEN BITDVC]
IOP ITEM.CHAN ;MAKE OPEN WORD
SOT ;TE!4

HAI-T BITOPNl
MOVE! SCIIIBFS
EACH SCI,JOUFv
MOVE iJEm.rI.BUF 2]
ion iTtA.CH1N
XCT ~
MO0VE" 71,. -FF
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MOVE ITEM,[INPUT]
IOR ITEM.CHAN
MOVEM ITEM.INCMD
JRST *RETAD ;DONE INITING TTY LINE

NOCHNS: OUTSTR [ASCIZ/
No channels left., forget it

POPJ P.

TTYSLP: MOVEI 0.0 ;SLEEP A JIFFY
SLEEP 0.

TTYTAB: INSKIP 0 ;has a char bean typed?
JRST DOBTPD ;NO

SETOM 1(P) ;return TRUE (SO CALLER GETS INPUT FROM TTY)
POPJ P.

DOBTPD: XCT BITCHK ;IF THERES A CHAR IN BITPAD BUFF. 00 IT
JRST TTYSLP ;ELSE SLEEP A BIT AND TRY AGAIN

PUSHJ P.BITPAD :GET INPUT FROM BITPAD
SETZM 1(P) ;return FALSE
POPJ P.

BITPAD: POP P,RETAD
HRRZM SC2.RETVL1
HRRZM SC3.RETVL2
HRRZM SC4.RETVL3

FRC6: MOVE! ITEM.6 ;FIRST IS 6 DIGITS
MOVEM ITEMNCOUNT
PUSHJ P.GETBYT

~jRST FRC6 :INSIST O03 GOOD DATA
MOVEM SCI.FSTVAL
MOVEI ITEM,5 ;SECOND IS 5 DIGITS
MOVEM ITEM.COUNT
PUSHJ PGETBYT

JRST FRC6 :BAD DATA, LOOK FOR 6 BEFOE CONTINUING
INDON: MOVEM SCI.@RETVL3 ;RETURN VALUE3 (Y VALUE)

MOVE SC1.FSTVAL ;STRIP OFF BUTTON FROM FSTVAL
IDIVI SCI.TDIODOOO
MOVEM SCI.@RETVL1 ;RETURN BUTTON (RETVLI)
MOVEM SC2,@RETVL2 ;RETUJRN VALUE2 (X VALUE)
JRST ORETAD

GETBYT: SETZ SCI. ;RETURN VALUE
BITILP: SOSG IBF+2 ;COUNTER

PUSHJ P.REFBUF
ILDB SC2.IBF+1
CAIG SC2."9" -DONT START TILL GET A DIGIT
CAIGE 5C2."O"

JRST BITILP
CrJTLOP: IMULI SC1.10

ADD! SC1.-t060(SC2) :SUM DIGITS
SOSG COUNT :DIGIT COUNTER

JRST COTC3JT
SOSG IBF+2 ;BUFF COUNTER

PUSHJ P.REFBUF
ILDB SC2.IBF+1 ;NOW MUST HAVE 5 OR 6 DIGITS (1ST OR 2ND)
CAIG 5C2, "g-
CAIGE SC2."0"

JRST 31TBAD ;GARBLED . . LOOK FOR 6 AGAIN
JRST CN'TLGP ;GO FOR REST

GOTCNT: SCS'. :JF+2 3UFF COU.'TER
PUSHJ 0, RE FULF

ILOB SC2.IdF+1 ;iiEXI MUST LE '101DIGIT

JkST C',0
BA~rLR: SOSG IF,2 'J'4 F -) C.-, E T
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ILDB SC2.IBF+1
BITBAD: CAIE SC2,TO15 ;CARRET

JRST BADCLR ;NO, CLEAR THE CHARS
MOVEI SCI.-1
DBEEP SCI.
OUTSTR CASCIZ/Bad data/]
POPJ P, ;YES. RETURN ERROR

GOODEND:AOS (P) :GOOD ONE SKIPS BACK
POPJ P,

REFBUF: MOVE ITEM,INCMD
XCT ITEM
SOS IBF+2
POPJ P. :GO BACK WITH NEW DATA

PPSET: PPSEL 2 ;PAGE PRINTER 2 ON
PPACT tO100000 ;SEE 2. erase 0
OPYPOS -450
DPYSIZ t02001 :2 LINES AT BOTTOM OF SCREEN. SCROLL CONTINUOUSLY
LEYPOS 0 ;LINE EDITOR AT BOTTOM OF SCREEN
PPACT tO500000 ;SEE 2 and 0 (now cleared)
POPJ P.

PPSET2: PPSEL 2 :PAGE PRINTER 2 ON
PPACT +O100000 SEE 2. erase 0
OPYPOS -400
DPYSIZ t04001 ;2 LINES AT BOTTOM OF SCREEN. SCROLL CONTINUOUSLY
LEYPOS 0 ;LINE EDITOR AT BOTTOM OF SCREEN
PPACT PO500000 :SEE 2 and 0 (now cleared)
POPJ P.

PPDONE: PPACT t04OOOOO ;SEE 0 (clear 2)
DPYCLR ;FREE PP 2
POPJ P.

BITDVC: EXP MODE
SIXBIT/TTY
EXP IBF

IBF: EXP 0,0.0
TTIBFS: BLOCK 100

INTEGER INCMDCHANLINERETAD.RETVL1.RETVL2.RETVL3.COUNT.FSTVALBITCHK

END

4



Epipolar Program 61

10: Epipolar Registration Program

See section 4 for documentation on using this program.

Begin "epipolar determinations"

REQUIRE "16A" COMPILER-SWITCHES; comment FIXR.FLTRADJSP;
DEFINE w-"3.141592663";
DEFINE UNLESS-"WHILE

DEFINE a="COMMENT ;
DEFINE THRU="STEP I UNTIL";
DEFINE TAB-"-11";
DEFINE CR-"'16";

DEFINE LF-"'12";
DEFINE CRLF-"'1&*12";
DEFINE CCRLF-"Vl5&'2";
DEFINE NN-20:

REQUIRE "CAMRAS.HDR[1,jfm]" SOURCE-FILE:
a Gennery's camera solver;

REQUIRE "MATRIX.HDRrIJFM]" SOURCE-FILE;

a Matrix operation utilities;
REQUIRE "CHOSPT.HDR[S.HHB]" SOURCE-FILE:

a Harlyn's point matcher;
REQUIRE "PIXSAI[S,HEJ" LIBRARY;
REQUIRE "PIXFAI[SHE]" LIBRARY:

a Source files for image manipulation procedures: see below;

EXTERNAL INTEGER PROCEDURE PIXEL(REFERENCE INTEGER PIX; INTEGER I.J);

a gets the value PIX of a pixel of coordinates I.J;

EXTERNAL PROCEDURE PUTEL(REFERENCE INTEGER PIX; INTEGER I,J.VALUE);
" sets the value PIX of a pixel of coordinates I..];

EXTERNAL INTEGER PROCEDURE PFLDIM(STRING FILNAM);
" gets the proper array dimension to represent the image called FILNAM;

EXTERNAL INTEGER PROCEDURE GETPFL(STRING FILNAM; REFERENCE INTEGER PICTURE);
a fills array starting at PICTURE ( for dimension see PFLDIM

wlth picture contained in file FILNAM;
EXTERNAL INTEGER PROCEDURE

PUTPFL(REFERENCE INTEGER PICTURE; STRING FILNAM; INTEGER MODE(l));

" writes out a picture file FILNAM with data

contained in array starting at PICTURE;

EXTERNAL INTEGER PROCEDURE PIXDIM(INTEGER HEIGHT.WIDTH,BITS);
" gets the proper array dimension to represent a HEIGHT x WIDTH image;

EXTERNAL INTEGER PROCEDURE MAKPIX(INTEGER HEIGHT.WIDTHBITS;
REFERENCE INTEGER PICTURE);

" creates an image array, starting at PICTURE, for a HEIGHT x WIDTH image;
EXTERNAL PROCECURE WIPE(REFERENCE INTEGER PIX; INTEGER value);

a makes evqry pixel of the array equal to value;

a Global vari'bl-s;

REAL ARRAY GG[1:51;
a Adjusted values of the parameters (azimuth.elevation,pai.tilt.Pnd rnll);

REAL ARRAY RM[I:3.1:3];
a rotation matrix between basal and base 2;

REAL ALPHA.BETAGAMMA,LAMDA.MU,NU;
a translation vector components in base I and 2;

INTEGER ECASE;
a ECASE is a flag for the kind of geometry we have

£C.'SE-1 : two epipoles ( most common :- )



62

ECASE2: one epioole in imae I
ECASE-3 one epipole in image 2
ECASE=4 : no epipole;

INTEGER PBITS:
a number of bits per pixel, returned by CHOSPT:

REAL ARRAY E1,EZ[1:2];REAL ARRAY VIV2[12 :;
a points and vectors in images I & 2,

epipoles or epipolar directions when they exist,
else. generic points and vectors;

REAL FFIFF2;
a Focal distances in images I & 2;

REAL ARRAY M.MINV[I:2.1:2];
a matrix A of the text and its inverse;

REAL K.NI:

a aeneric and total epiline numbers: OSKcNl;
REAL LOXLOY.LNX.LNY;

a dimensions of the images( output of CHOSPT) and of the transforms;
INTEGER IK.ILOX.ILOY,ILNXILNY;

o the same, truncated, as integer variables:
REAL THEfA.THFTA0,THETAI THETA2;

a generic.minimummaximum and increment
angles under which image I is viewed from El;

REAL PHIOPHII;
a mn and max angles for image 2;

REAL OIMIN.DIMAX.D2MAX,D2MIN.D:
a minimum, maximum and generic distances from epipoles to images I & 2;

REAL ARRAY OF3L1:2];

a offset for case 3, used in epiline calculation;
INTEGER I. a generic index;
BOOLEAN RIGHTI.RIGHT2;

a true if epipole right of image, output of limits;
BOOLEAN DEBUG:
STRING PI.P2:

a filenames for images PI and P2;
INTEGER SIZP.SIZS;

a Size of the arrays that contain original and transformed image;

REAL ARRAY LX[I:NN]; a ARGUMENTS FOR CAMRAS;
REAL ARRAY LY[1:NN];

REAL ARRAY RX[I:NH];
REAL ARRAY RY[I:NN]:

INTEGER NUM;

a I/O procedures:

INTEGER PROCEDURE GET,',"S'4-R;
Begin INTEGER ANS; ANS-INCHRW LAND '137; PRINT(CRLF): RETURN(ANS) End;

BOOLEAN PROCEDURE ASK(STRING QUESTION): a ask a yes/no question;
Begin "ask"

INTEGER ASK;
DO BEGIN print(question,"(Y or N)? ");

ask-get&nswer:
END UNTIL ask-"Y" v ask="N";

return(if a~k-"Y" then TRUE else FALSE)
Ead 

"  
sk";

PROCEDURE GETD(REFEn£iCE ;JTEGER NUM; STRIMIG QUESTION; INTEGER EFAULT);

Begin "GETD'
PRINT(QUES:.C );

-:_.: PTOSTR(0.C\ L . ob f));

4UM C\'C( L)

- , '. .- '..;-



PROCEDURE SPACEPAUSE(STRING TEXT): 63
BEGIN

INTEGER T;
PRINT(TEXT);,
DO T-INCHRW UNTIL T-"
PRINT(CRLF);

END;

PROCEDURE GETO(REFERENCE INTEGER NUN: STRING QUESTION-, INTEGER DEFAULT);
Begin "GETO"

PRINT(QUESTION);
PTOSTR(O .CVOS(DEFAULT));
NUM .- CVO(INCHWL)

End "GETO";

PROCEDURE GETF(REFERENCE REAL RNUM; STRING QUESTION: REAL DEFAULT):
Begin "GETF"
STRING NUMSIR;INTEGER BRCHAR;
PRINT(QUESTION);
PTOSTR(O ,CVF(DEFAULT)):
RNUM .- REALSCAN(NUMSTR-INCHWL.BRCHAR);

End "GETF";

aArithmetic procedures;

SIMPLE PROCEDURE PROD? (REAL ARRAY A,BC);
a multiplies 2*2 matrices;

BEGIN
REAL T;
INTEGER 1.3;
FOR 1.-I STEP 1 UNTIL 2 DO

BEGIN

FOR J.-1 ST~r I UNTIL 2 DO
T .- T + B[I,JJ)CJ):

END
END;

SIMPLE PRO,:DURE PROD3 (REAL ARRAY ABC);
a multiplies 303 matrices;

BEGIN
REAL T;
I.FrEGER I,J;
FOR 1.-I STEP 1 UNTIL 3 DO

BEGIN
T4-O;
FOR J.-1 STEP I UNTIL 3 DO
T .- T + B[I.j)*C[J];
AEI).-T

END
END;

PROCEDURE PARAMIETERS;
determines the rotation matrix R and the translati~~* ',ector t in ,hbases;

Begin "PARAMETERS"
REAL ARRAY TMI[I :3,I:3),TI .T'[I:3);

a MI is translatlci -i:ri- . irrf r.-)
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TI and T2 are translation vectors in base 1 and base 2;
REAL ARRA Y Al .A2,BI ,B2.D3.D[1 :3. 1:3);

SI.-S?-S3.-3;
ROTMAT(A1.O,GG[1).-2);
ROTMAT(A2.D,GG[2], 1);
ROTMAT(BI .O.GG[3),2);
ROrMAr(B2,DGG[4j,-I);
ROTMAT(B3,D.GG[53,-3);
MULr(TMI.A1.A2); a translation matrix;
MULI(D. B 8):
MULT(Rt4.B3.O); a rotation matrix;

ALPHA.-TI~lI.-TMI[1.3); a translation vector is 3rd column of translation matrix;
BETA-Tl[2]-TMI[2 .3:;
GAMMA.T1[3J.-TMI[3 .3);

PROD3(T2,RM.Tl); a T2 is translation vector in second base;

LAM4DA.-T2E 1);
MU.-T2[2);
NU.-T2[3];

PRINr("ROTATION MATRIX RM:",CRLF);
PRINT( RM[ 1. l],.RM[ 1, 2]RM[1, 3) ,CRLF);
PRIN (RM[2 .I] .RM[2 .2] .RMC2 ,3) .CRLF);
PR INT (RM[3. 1]. RM[ 3.2]. RM[3 .3) .CRLF);

PRINT("TRANSLATION VECTOR t:",CRLF);
PRINT(ALPIHABETA.GAMMA."IN BASE ONE".CRLF);
PRINT(LAMDAMUtJU. 'IN BASE TWO",CRLF);

end "PARAMETERS":

a Geometr'ic procedures:

SIMPLE PROCEDURE RECT(REAL EX,EY,VX.VY.RO;REFERENCE REAL XY);

a rect returns the rectangular coordinates of a point with olar coordinates
ro and o with respect to a shifted origin e(ex~ey).
vx end vy are supposed proportional to cosa and sin a, but vx>.O:
a is always in [-wr/2.w/2]. and RO should have a sign;
BEGIN "RECT"

X-SQRT(VXt2+VYt2);
VX.-VX/X;
VY.-VY/X:
X.EX+ROOVX;
Y-EY+ROOVY;

END "RECT";

PROCEDURE POLAR( REAL EX.EY.X.Y; REFERENCE REAL THETARO);

a POLAR returns the polar coordinates of a point (x~y) with respect to a
shifted origin (exey)
RO is always a positive number.and THETA is in the determination [0.2w];

Begin "POLAR"
RO.-SQRT((EX-X)t2+(EY-Y)'2);
THETA.-ATAN( (EY-Y)/(EX-X));
IF (X-EX)<O THEN THETA~-THETA+w;
IF THETA cCO THEM4 THETA*THETA+2*w:

EN4D "POLAR";
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SIMPLE PROCEDURE NEWX( REAL EX.EY.VXVY:REFERENCE REAL NX);
a A point E has the coordinates EX and EY in a plane where there is a vector V.

If this plane is rotated so that V becomes the new X-axis. and shifted so
that the old origin is anywhere on the new Y-axis, the new abscissa of
E is just its projection onto V:;
BEGIN: NX-(EXOVX+EYOVY)/SQRT(VXt2+VY2);END;

BOOLEAN PROCEDURE INPICTURE(REAL X.Y.LXLY):
RETURN( IF (0XSLX A O YsLY) THEN TRUE ELSE FALSE);

PROCEDURE LIMITS( REAL LXLY.EX.EY;REFERENCE REAL ALPHAOALPHAI,DMIN.DMAX;
REFERENCE BOOLEAN RIGHT);

a LIMITS returns:
1) the minimum and maximum distances DMIN and DMAX from a point
E to a rectangle of length LX and height LY with bottom left corner at
origin.( typically, a picture and its epipole )
2) The minimum and maximum angle through which the rectangle is viewed
from point E. These angle ALPHAO and ALPHAI are in the determination
[0.2w]( or occasionally, [-/2.+r/2) ) and the distances are consequently
positive only.;

BEGIN "LIMITS"
REAL XY;
REAL 01.2.03.,4;

DMIN.SQRT(EXt2+EYt2); a initialize;
DMAX-0;

rOR X-1 THRU LX DO
BEGIN

V DESCRIBE HORIZONTAL SIDES OF RECTANGLE;
DMAX.DMAX MAX SQRT((EX-X)t2+EYt2) MAX SQRT((EX-X)t2+(EY-LY)t2);
DMIN-DMIN MIN SQRT((EX-X)t2+EYt2) MIN SQRT((EX-X)t2+(EY-LY)t2);

END;
FOR Y-1 THR3 LY DO

BEGIN
a DESCRIBE VERTICAL SIDES OF RECTANGLE;
DMAX-DMAX MAX SQRT(EXt2+(EY-Y)t2) MAX SQRT((EX-LX)t2+(EY-Y)t2);
DMIN-DMIN MIN SQRT(EXt2+(EY-Y)t2) MIN SQRT((EX-LX)t2+(EY-Y)t2);

END;

a angle determination;
a All angles are initially supposed in [0,2w3;
IF(OSEX~sLX A DOsEYsLX)THiE% BEGIN

a epiline is inside the image;
ALPHAO 0;
ALPHAI20w;
END

ELSE BEGIN
a el is outside the image:
determine the limit angles by inspecting the corners only;
POLAR(EX.EY,0.0,I,D);
POLAR(EX.EY.LX.O.$2,D);

POLAR(EX.EY .0LY.03.0);
POLAR(EX.EYLXLY,$4.D):

ALPHAI-(PI MAX 82 MAX P3 MAX $4);
ALPHA0-(#I MIN P2 MIN P3 MIN $4);
IF ALPHA1-ALPHA0>w THEN BEGIN
a [0.2w) is not a convenient interval for our angles

( the apipole is loft of the image, on the same vertical level):
a Angles are in [-w2,w12J;

014ALPHAI;
ALPHAI1-ALr:IA0;
ALPHAO 0-20w;

IF DEJUG THEN PRINT("EPIPOLE ON LEFT SIDE AND SAME VERTICAL LEVEL AS IMAGE:",CRLF):
IF DBUG THEN PRIIT(-FOR CONNEXITY, ANGLES ARE NOT CHOSEN IN [0.2w]"):

S _ -P! T("IN LIMITS, a0 " ,ALPHADCRLF);

. ! ... ...... ......
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IF DEBUG THEN PRINT("IN LIMITS. al- ",ALPHAI.CRLF);
END;

a if epipole right of picture. set flag;
RIGHT-(EX>LX/2);

a and invert scanning order by exchanging angles;
IF RIGHT THEN BEGIN

P1lALPHA1;
ALPHAIALPHAO;
ALPHAGO0:I

END;
END;

END "LIMITS";

PROCEDURE FRAME( REAL EX.EYVX.VY,LX.LY;REFERENCE REAL IIX.IIY,I2X,12Y;
REFERENCE BOOLEAN OUTFRAME);
a Given a point E and a vector V ( they define a line ). frame will determine.

if they exist, the intersections of this line with the frame of the
rectangle [O:LX.O:LY];

BEGIN "FRAME"
REAL X,Y;INTEGER FLAG;

PROCEDURE ASSIGN;
BEGIN "ASSIGN"
IF FLAG-0 THEN BEGIN IIX4X; IIY'Y; END;

IF FLAG-I THEN BEGIN 12X-X; 12Y;Y; END;
IF FLAG>l THEN PRINT("ERROR IN PROCEDURE FRAME",CRLF);
FLAG-FLAG+I;
END "ASSIGN";

FLAG-O;

IF VXa0 THEN BEGIN
X-0;

Y-EY+(X-EX)OVYIVX;
IF INPICTURE(X,Y,LX.LY) THEN ASSIGN;
X-LX;
Y-EY+(X-EX)*VY/VX;
IF INPICTURE(X,YLX,LY) THEN ASSIGN;
END;

IF VYeO THEN BEGIN
Y-O;

XEX+(Y-EY)OVX/VY;
IF INPICTURE(Y.X,LY.LX) THEN ASSIGN;
Y-LY;
XEX+(Y-EY)VX/VY;
IF INPICTURE(Y,X.LY,LX) THEN ASSIGJ;
END;

OUTFRAME-(FLAG-O);
IF DEBUG THEN PRINT (" goes through ".IIXIlY," and through: ",I2X,I2Y.CRLF);

END "FRAME";

PROCEDURE DETCAtE;

a determines the nature of the epipoler g4u...atry, accerdi.ag to te code:
case 1: two epipoles El and E2
case 2: one epipole El
case 3: one epipoli E2
cass 4: n3 zpipols;
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REAL THRESHOLD; aMINIMUM POSITIVE NUMBER;
GETF(THRESHOLD."MINIMUM CONVERGENCE ALLOWED: '.0.0001);
IF ABS(GAMMA).cTHRESHOLD THEN

IF ABS(NU)<THRESHOLD THEN ECASE*-4
ELSE ECASE-3

ELSE IF ABS(NU)<THRESHOLD THEN ECASE*-2
ELSE ECASE-1;

PRINT(- CASE:".ECASE.CRLF);
end "DETCASE";

PROCEDURE EPIPOLES;
a determines the epipoles and/or the epipolar directions
It also calculates some parameters used by EPILINE ( matrix N end offset 0F3 )

Begin "EPIPOLES"
REAL DELTA; a Determinant of matrix N;

IF(ECASE-l v ECASE-2) THEN BEGIN
EI[l).ALPHA*F Fl/GAMMA;
El[2J.BETAOFFI/GAMMA:
PRINT(-EPIPOLE El:",E1[l).E1[2],CRLF):

END;
IF(ECASE-1 v ECASE-3) THEN BEGIN

E2[l].LAMDA*FF2/NU;
E2[2J.MU*FF2/NU;
PRINT(-EPIPOLE E2:".E2[l),E2[2].CRLF);

a M is the main conversion matrix:
Mt . 1J-NU-RM[ .1]-LAMDA-RM[3,l);
M(1 .2)-NURM[1 .2)LAMOA-RME3.2];
M[2.1lJ.NURM[2.lJ-MU*RM[3.1];
M(2 .2].NU*RM[2 .2]-MU*RM[3.2):

a Compute the inverse of matrix N for transformation P24PI;
DELTA.-M[1 . ]*M[2,2]-M1,2]OM(2.l];
IF DELTA-0 THEN PRINT("UNABLE TO INVERT MATRIX NM CAN'T DUMP

I-) ELSE
BEGIN
MINV[1,l).- N(2,2]/DELTA;
NINV(2 .2].- M(1,1]/DELTA;
MINV[l.2]- -N[l,2)/DELTA;
MINV[2.l)'- -M[2,1)/DELTA;
END;

IF ECASE-3 THEN BEGIN
.and 0F3 is an offset used In ECA'E 3;

0F3[l).FFl*(NUORM[l.3J4LAMDAOR[3.3]);
0F3E2J.FFI(NUORM[2 .33-MUORM[3.3));
END;

END;
IF(ECASE-3 vECASE-4) THEN BEGIN

V1[1)-ALPHA;
VI[2]#4iETA;
IF V1]<0 THEN BEGIN V2Ie-V1(1J;VI2J.]--V![2] 1)
PRINT(-EPIPOLAR DIRECTION V1:".V1[1),V1[2].C.LF).

END.
IF(ECASE.2 v ECASE-4) THEN BEGIN

V2(1)'-LAMDA;
V2[2J-MU;
PRINT(-EPIPOLAR DIRECTION V2:" .V2[1).V!(?].C. ..F):

E%*D;
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End "EPIPOLES";

a more procedures;

PROCEDURE EPILINE;
Begin "EPILINE";

IF ECASE-I THEN BEGIN
a This is an epipolar vector in P1:
THETA.THETAO4(K+O.5)0THETA2; a take middle of interval;
Vifi).-COS(THETA);
Vl[2)4-SIN(THETA):
a make v1 paint to the right;
IF V1[l)<o THEN BEGIN VICIJ.--V1]JVIr2J.-V1(2J END;
a And this (V2) is the corresponding vector in P2;
PRO02(V2.N.Vl);
aV make v1 and v2 have consistent directions;
IF Vl[1J0v2[1)<O THEN BEGIN V2[1]'--V2[13;V2[2].-V2(2];END:

END;

IF ECASE=2 THEN BEGIN
a This is an apipolar vector in P1;
THETA-THETAO+( K+O 5)*THETA2;
VIE I]-COS(THETA);
ViE2].-SIN(THETA):
a And this is a point belonging to the twin line in P2:
E2[i).FF2*(RM[1,1]"VlfI)+RM[1.2]VI(2))/(RM[3.1)*Vl[l)+RM[3,2)*V1(2]) :
E2[2).FF2-.(RM[2,1].ViEI)+RM[2,2]w1I:2])/(RM[3,1i)VXI)I+RM[3.2).V1E2)

IF(ECASE-3 v ECASE-4) THEN

IF A8S(VICj))LOXSV1[I)SLOY THEN BEGIN
aWe pick a point on the Y axis:

EICI)4-O.0;
EI(2)-(LOX-ABS(VI[2)/Vl[l))+LOY)O(K+0.5)/N:
IF V1[2])-O THEN E1E2)-EI2)-1O0V1[2]/V1EI):

ENO
ELSE BEGIN

a We pick a point on the X axis;
EICI]-(LOY*ABS(V1E1J/VIr2))+LOX)*(K+..)/N1:
IF V1[23>O THEN EI)-E1[1])LOY0Vl[I]/V1(2):
EI[2]-0.O;

END;
IF ECASE-3 THEN BEGIN

a V2 directs the twin lip* in P2:
PROD2(V2.NE 1):
V2[1).-V2EI)+OF3E1];
V2E2]4V2[2]+OF3E2]:

END:

IF ECASE-4 THEN BEGIN
a The twin line in P2 goes thru E2:
E2(1).FF2*(RM[1 .1)*EIEII+RM[I.2)*EI[2J+RMEI.3]SFFI)

/(RM[3. 1]*EliJ+RM[3.2)*EI[2)+RN([3.3]OFFI);
E2[2J4-FF2(RN[2 .IJEIEI)+RME2.2]SE1E23+RM(1.3)OFFi)

/(RM[3.1J*E1(1J.RM[3.2J*E1(2].RM(33.3OeFF);

E'id "EPIL'
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a DEBUG'-ASW( "EBUG"): DEBUG-FALSE;
IF DEBUG THEN SETPRINT("DEBUG"2'B");
IF DEBUG THEN SETFORNAT(0.7) ELSE SETFORNAT(0,3);
CHOSPTS( LX.LV. RX. RY. NUN. ILOYILOX .PBITS P1, P2 ,TRUE)
IF DEBUG THEN PRINT(-NUM.".NUM.CRLF);
IF DEBUG THEN SETFORMAT(0.7) ELSE SETFORMAT(0,3);
LOY'-ILOY ;LOX'-ILOX;

End "overhead";

PROCEDURE SOLVER;

aThis procedure uses Gennory's code to do the camera registration from
a set of corresponding points in the two images. It allows the user
to pick the points on the images in an interactive way;

Begin "Solver"

REAL ARRAY Xl[l:num].Yl[1:num).X2[1:num],Y2[1:num); a chosen points;
REAL ARRAY SXX[I:num).SYY[I:num).SXY[1:num.

GPt 1: 5) SP(1:5];
REAL ARRAY S[1:5,1:5]; a Covariance matrix of the errors in GG;
REAL ARRAY RESID[1:num.1:3);
REAL SD.ACC,Q.CONV;
INTEGER SDP.CORDST;
INTEGER SDF.MAXEDIT;
INTEGER NREJECT;
BOOLEAN ARRAY REJECTE1:num),FLAG[I:7);
BOOLEAN OUTPUT.RESOUT;

FOR I1 THRU NUN DO
Begin "copy values"

X1[Ij.-LX[Ij:YIEIJ.-LYEIJ;
X2[I].-RX[I] ;Y2EI).-RY[I];

End "Copy values";
FOR I-I THRU NUN DO

SXX[I].-SXY[I)'-SYY[I)'-Q:
GETF(FFI,"Focal length :",320); FF2-FFI;
GETD(MAXEDIT."Number of points that can be rejscted:".0);

SOP.-O.67:CORDST-0; SDF'-O ; OUTPUT-RESOUT.(1-1);
GP[l)-1 .57;GP[2].-GP[3]-GP[4].GP[5)-0 .0;

CAMERA(FF1,FF2.SDP.CORDST.SDF.NUM.MAXEDITOUTPUT.RESOUT.LX.LYRX,RY,SXX.SYYSXY
GP.SP,GG,S.RESID.SOACC.Q.CONV,NREJECT.REJECT,FLAG); a do the solving;

OUTSTR("Final values of parameters -"&crlf);
PRINT(" azimuth:".CVF(GG[1) crlf);
PRINT(" elevation:" .CVF(GGr2),crlf);,
PRINT(" pan:",CVF(GG[3)crlf);
PRINT(" tilt:".CVF(GG[4)).crlf);
PRINT(" roll:".CVF(GG[5]).crlf);

End "Solver";

PROCEDURE NEWDIN;

Begin "Now-dilmensions"
PRINT(CRLF);

GETF(?Jl,"NUM~BER OF EP17'CL.. L;..5-: ".10);
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CASE ECASE OF BEGIN "CASE 1"

BEGIN END:

BEGIN
LIMITS(LOXLOY,E2[l).E2[2J.PHIO.PHII.O2MIN.D2MAX.RIGHT2):
IF INPICTURE(E2[1).E2(2).LOX.LOY) THEN LNX.-D2MAX+D2MIN
ELSE LNX4-O2MAX-D2MIN;
LIMITS(LOX.LOY.EI[l).EI[2].THETAO.THETAI.DMINJIMAX.RIGHTI);
a theta2 is the incremental angle;
THETA2.(THETAI-THETAO)/Nl;
a the epipole is either inside or outside;
IF INPICTURE(EI(1).EI[2J.LOX.LOY) THEN LNX'-DIMAX+DIMIN NAX LNX
ELSE LNX.-DIMAX-DIMIN MAX LNX;

END:

BEGIN
NE WX (LOX. LOY. V2[ 1). V2[ 2) ,LNX);
IIMITS(LOX.LOY,EI[I].E1C2J.THETAO.THETAI.DIMIN.DIMAX.RIGHTI);
IF INPICTURE(EI[1).EI[23,LOX,LOY) THEN LNX.-OIMAX+DIMIN MAX LNX
ELSE LNX.-DIMAX-DIMIN MAX LNX:

END:

BEGIN
NEWX(LOX.LOY.V1~l].V1[2].LNX):
LIMITS(LOX.LOY.E2[l).E2[2].PHIO.PHI1.D2MIND2MAX.RIGHT2);
If INPICTURE(E2[1].E2[2].LOX.L0Y) THEN LNX-D2MAX+D2MIN MAX LMX
ELSE LNX.-D2MAX-D2MIN MAX LNX;

END;

BEGIN
NE WX (LOXLOYV2( I) V2 E21.LNX);
NE WX( LOXLOYVIf I].VI[2],LNY);
LNX.-LNX MAX LNY;

END;
END "CASE 1";
LNX-LNX+I;
LNY-NI;

aprepare the integers to be used as indexes for arrays:
IKK:ILOXLOX;ILOYLOYILNX-LNX;ILNYLNY;

PRINT("THE DIMENSION OF THE NEW PICTURES WILL BE: ".ILNX."(+4) X ".ILNY.CRLF);

END "New-.dimensions";

PROCEDURE PRINTLINE;

BEGIN "PRINTLINE"
BOOLEAN OuTFRAME .MANUAL. PAUSE:
REAL XI.Y1.X2.Y2;
INTEGER IXI.1X2.IY1.1Y2;

print(" If you chose the step-by-step option. the execution stops batwean".crlf);
print(" each line, waiting for you to type Y".crlf);
print(" If you do not chose this option, the execution proceeds outomatically.".crlf);
prin~t(" either in SLOW or FAST mode".crlf.crlf);
print("Whon printing is completed, type Y in both cases to return to the main program.'

MANUAL.- ASK(" STEP-BY-STEP PRINTING )
IF MANUAL THEN ELSE PAUSE.-ASK("SLOW i4UTION");
INITOVERLAY:

FOR K.-0 THRU NI-1 DO
BEGIN "fVILOOP"
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ELSE IF PAUSE THEN CALL (i."SLEEP");
EPILINE:
FRAME(EI[il.Ei[2].Vi[i).Vi(2).LOX,LOYXI.YIX2.Y2,OUTFRAE);
IF OUTFRAME THEN PRINT(-EPILINE # -.K.- OFF PICTURE 1".CRLF)

ELSE BEGIN

SETLEFT:
OVERLINE( lXI. lv. IX2 .IY2):
END;

IF MANUAL THEN ASK ("RIGHT "
ELSE IF PAUSE THEN CALL (I."SLEEP"):

aPRINT (" In picture 2. "~);
FRAME(E2[i).E2[2].V2Ei],V2t2],LOX.LOY.XI.YX2Y.OUTFRA4E);
IF OUTFRAME THEN PRINT(-EPILINE # ".K.- OFF PICTURE 2".CRLF)

ELSE BEGIN
SETRIGHT.

OVERLINE(IX1.IYi1X2,IY2);
END;

END "MNLOOP";
SPACEPAUSE("Type <space> to continue: )
FINIOVERLAY;

I rr END "PRINTLINE";

PROCEDURE NEWCI( REAL XY;REFERENCE REAL Z:REFERENCE INTEGER N);

a X and Y are the coordinates of a point in picture 2.
NEWC2 returns N and Z which are the number of the epipolar line( new ordinate)
and the position of the point on this line ( new abscissa).;

begin "newci"
IF ECASE-i THEN BEGIN

POLAR( E1[1].EiE2],X.Y.THETA.Z);
IF(THETAOsTHETA+wvsTHETA1) THEN THETA*-THETA+w;
IF(Tf4ErAOSTHETA-w:5THETAI) THEN THETA.-THETA-w;
Z-Z-DiMIN;
N-Nl1(THETA-THETAO)/(THETAI-THETAO)'O.5;

END ELSE PRINT("SORRY. DEGENERATE CASE NOT YET DEVELOPPED");
end "newci"t

PROCEDURE NEWC2( REAL X.Y:REFERENCE REAL Z;REFERENCE INTEGER N);

a NEWC2 does the same as newc2 in picture 0, but since the epilines are referenced
by their position in picture 1. this involve some transformation first.;

begin "newc2"
IF ECASE-1 THEN BEGIN

POLAR(E2[1].E2[2).X.Y,THETA.Z);
Z-Z-D2MIN;
V2(i).-COS(T.4ETA);
V21:2)-SIN(TnETA);
a And this (VI) is the corresponding vector in P1;
PROD2(VI ,MINV.V2);
a now we find which angle v2 correspond to and what epiline that is;
THETA.-ATAX(Vi[2]/V1[i)
IF(THET.OsTHETA~wsT.TAI) THEN THETA-T':ETA.IF:
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IF( THETAOSTHETA-wiTHETAI) THEN THETA.-THETA-w;
N-NIO(THETA-THETAO)/(THETAI-THETAO)-O.8:

END ELSE PRINT("SORRY, DEGENERATE *CASE NOT YET DEVELOPPED"):
and "newW2"

PROCEDURE TRANSFORN:
BEGIN "TRANSFORM'

BOOLEAN OUTFRAME;
REAL XIYI,X2.Y2:
INTEGER IXI. 1X2,. . 1Y2.NX .NNI .VALUE;
SAFE INTEGER ARRAY PP[O:SIZP-1).SSCO:SIZS-I); a INPUT AND OUTPUT ARRAYS;
INTEGER XMIN.XMAX,N: a Length info;
STRING EPl.EP2; a transforms filenames;

PROCEDURE CLEARARRAY;
BEGIN
FOR IK.-0 THRU NI-I DO
FOR I- 0 THRU ILNX-I DO

PUTEL(SS[0J IX. 1,0):
END;

PROCEDURE TRLINE( INTEGER IM; REAL EX.EY.DMAX.DMIN;BOOLEAN INVERT )

BEGIN "TRLINE"
REAL LOWERD.UPPERD; a PICTURE BOUNDS:
REAL VX.VY; EIIE#"KCL)

If DEBUG THEN PRINT('EIIE~ .CL)
EPILINE;
IF IMzI THEN BEGIN VX-V[II;VY.V1C2);END

ELSE BEGIN VX-V2[1];VY-V2[2];END;
FRAME(EXEY.VX.VY.LOXLOY,X1.YIX2.Y2.OUTFRAME);
IF OUTFRAME THEN PRINT("EPILINE # ",K." OiF PICTURE ".IM.CRLF)

ELSE BEGIN
IK'-K: IX1.-Xl;IX2.-X2 ; 1Y-YI ; Y2.-Y2:
IF DEBUG THEN ELSE OVERLINE(IXI.IYI.1X2.1Y2);
XMIN.-DMAX;XMAX'-O; a Initialize;
IF INVERT THEN BEGIN UPPERD.--DMIN:LOWERD.--DMAXZEND

ELSE BEGIN UPPERD.-DMAX: LOWERDi-DMIN; END;
FOR D- LOWERD THflU UPPERD DO

BEGIN "pt-by-pt"
RECT(EXEYVX.VY,D.XI,Yl);
IF INPICTURE(XI,Y1.LOX,LOY) THEN

BEGIN "transfer"
IXl'-XI;IyI.-Y; a coordinates on source image;
VALUE'-PIXEL(PP[0).IYI.IXI);
IF DEBUG THEN OVERLINE(IXl.IYI.IXI.IYI);
NX.-O-LOWERD;
XMIN.-XMIN MIN MX:
XMAX.-KMAX MAX NX;
PUTEL(SSrO). IK.NX+4.VALUE);

END "transfer":
END "pt-by-pt";

N.-XM4P1 LSH -8; a 8 MS~s of boginning of line;
* PUTEL(SSEOJ. IK.O.N);

N.XMIA Lt.43 '377; a8 LSBs of beginning of line;
PUTEL(SS[0],IK. 1.N);
N-XMAX LSH -8; a 8 MS~s of end of line;
PUTEL(S,-fO).IK.2.N);
N-X?'%X Wi~D '377; 8 LSBs of end of line;
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a Start of main program;
BEGIN"Maln"
OVERHEAD;
DO BEGIN

SOLVER;
PARAMETERS;
DETCASE;
EPI POLES;
NEWD IN;

IF ASK( "TRANSFORM THE IMAGES INTO EPIPOLAR SPACE )THEN
IF ECASE-I THEN BEGIN

SIZP'-PFLDIM(P1);
SIZP.-PFLDIM(P2) MAX SIZP;
ILNX4-ILNX+4: a make space for line length info;
SIZS.-PIXDIM(ILNY.ILNX.PBITS);
TRANSFORM;

END
ELSE PRINT(-NO TRANSFORMATION FOR DEGENERATE CASE-)

ELSE IF ASK("DRAW EPIPOLAR LINES ") THEN PRINTLINE;

IF ASK(-DUMP THE PARAMETERS -) THEN DUMP;

END UNTIL ASI(("ANOTHER TRY -)-FALSE;

END "Main"

End "epipolar determinations";
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END:

END "TRLINE":

" body of procedure trmnsf'orml;

" DEBUG.-ASK("DEBUG");

PRINT(I-NEW LEFT PICTURE:")
EPI.-lNCHWL;.
PRINT(-NEW RIGHT PICTURE: )
EP2.-INCIHdL:

PRINT("PICTURE 1:".CRLF);
INITOVERLAY;
SETLEFT;
GfTPFL(P3.PP[O);
IAKPIX(ILWY.ILWX.P81FS.SS[OV); XDMNRGI:
FOR X.-0 THRU KI-1 DO TRLINE(1.ElUIj.EIT2J.DIMAKDMNRGI)
PUTPFL(SS[OJ.EPI)-:
FINIOVERLAY:

lNITOVERLAY:
PRINT("PICTURE 2:" ,CRLF).
SEIRIGHT;
GETPFL(P2,PPrOj):
PAKPIX(ILNY.ILNX,PBITS,SS[0)
CLEARARRAY;
FOR K-0 THRU Ni-I DO IRLINE(2.E2t1,EZZ).DlMAXDP4IN.RIGHT2):
PUTPFL(SS[OI.EP2):
SPACEPAUSE("Type <space> to continue: :
FINIOVERLAY:

END "TRANSFORM':

PROCEDURE DUtHP:

BEGIN "DUMP"

SETFORMAT(O. 7);
SETPRINT(MULL,"S"):

PRIMT("ECASE- -.ECASE.CR.F);
PRINT("NI" ".NI.CRLF);

PRINT("EI(2]- ".El[2J.CRLF);
PRINT("E2[11" -.E2[11.CRLF);
PRINT(-E?[2V- - .E2[23,CRLF):
PRINI("THETAO" ",THETAO,CRLF);
PRINT('THETAI- ".ITiETAI,CRLF);
PRINT("DIMIWd" -.DIMIW.CRLF);
PRINT("02M1N" -.02141N.CRLF):
PRINT( MINV[1.l3. ".MINVrI.I).CRLF):
PRINT("MINVtI.2)- ",M!NVCI.2],CRLF);

PRIWT(-M1%V[Z,23- - .MINVC2.21,CRLF);

SETPRINT(MULL.-T"):

END "CUVP'
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